ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Оце	нка: _		Кафедра ЭЛЕКТРООБОРУДОВАНИЯ
"	"	2013 г.	СУДОВ

РГЗ № 1

Дисциплина «ТЕОРЕТИЧЕСКИЕ ОС НОВЫ ЭЛЕКТРОТЕХНИКИ»

Специальность

180407.65 «Эксплуатация судового электрооборудования

<u>и средств автоматики»</u>

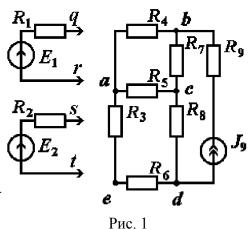
Тема: «Линейные электрические цепи постоянного тока в установившихся режимах работы»

3-1

Задание выдаг	но 25.09.2013 г
Срок сдачи	30.10.2013 г
Выполнил:	
Курсант групп	лы
ОИФ	
ΨΝΟ	
Сдал: «»	2013 г.
(подпись)	
Проверил:	
преподаватель	•

\mathbf{C}	O	Д	\mathbf{E}	P	Ж	A	H	И	\mathbf{E}
--------------	---	---	--------------	---	---	---	---	---	--------------

1. Содержание задания
2. Схема электрической цепи
3. Математическая модель ЛЭЦ, составленная на основе законов Кирхгофа
4. Расчет токов ветвей ЛЭЦ постоянного тока методом контурных токов
5. Расчет токов ветвей ЛЭЦ постоянного тока методом узловых потенциалов
6. Виртуальная компьютерная модель анализируемой цепи в среде <i>Qucs</i> с результатами симуляции ее работы (скриншоты экранов, полученные на соответствующих этапах моделирования в среде <i>Qucs</i>)
7. Таблица сравнения результатов расчетов и компьютерного анализа
8. Потенциальные диаграммы
9. Баланс мощностей


Изм	Лист	№ докум.	Подп.	Дата	РГЗ - 1. ТОЭ.			
Раз	раб.					Лит.	Лист	Листов
Пр	OOB.				линейные	У	2	
					ЭЛЕКТРИЧЕСКИЕ ЦЕПИ			
Н.ко	онтр.				ПОСТОЯННОГО ТОКА			
У	TB.							

1. СОДЕРЖАНИЕ ЗАДАНИЯ

Исследовать ЛЭЦ постоянного тока, работающую в установившемся режиме. Обобщенная для всех вариантов заданий схема цепи приведена на рис.1. Соединив проводники q, r, s и t с электрическими узлами, соответственно указаниям табл. 1 для конкретного варианта, получа-ют исходную схему цепи этого варианта. Параметры сопротивлений R_1 , R_2 и ЭДС E_1 , E_2 заданы в таблице вариантов (табл. 1). Параметры сопротивлений, включенных в остальных ветвях схемы, следующие: $R_3 = (80 + 10N)$ Ом, $R_4 = 50N$ Ом, $R_5 = 200$ Ом, $R_6 = 150$ Ом, $R_7 = 250$ Ом, $R_8 = 50$ Ом, $R_9 = 200$ Ом. Ток идеального источника тока $I_9 = 0.2$ А.

В процессе исследования необходимо:

- 1. Проанализировав задание изобразить схему электрической цепи для своего варианта.
- 2. Составить математическая модель ЛЭЦ, основанную на законах Кирхгофа. Рассчитать токи во всех ветвях исследуемой цепи, используя пакет *Scilab*.
- 3. Определить токи во всех ветвях схемы методом контурных токов, используя пакет *Scilab*.
- 4. Определить токи во всех ветвях схемы методом узловых потенциалов, используя пакет *Scilab*.
- 5. Создать виртуальную компьютерную модель анализируемой цепи в среде *Qucs* и, исследовав ее работу, найти токи ветвей и потенциалы узлов.

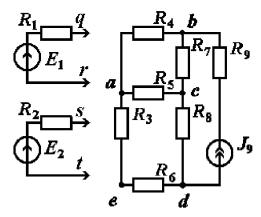
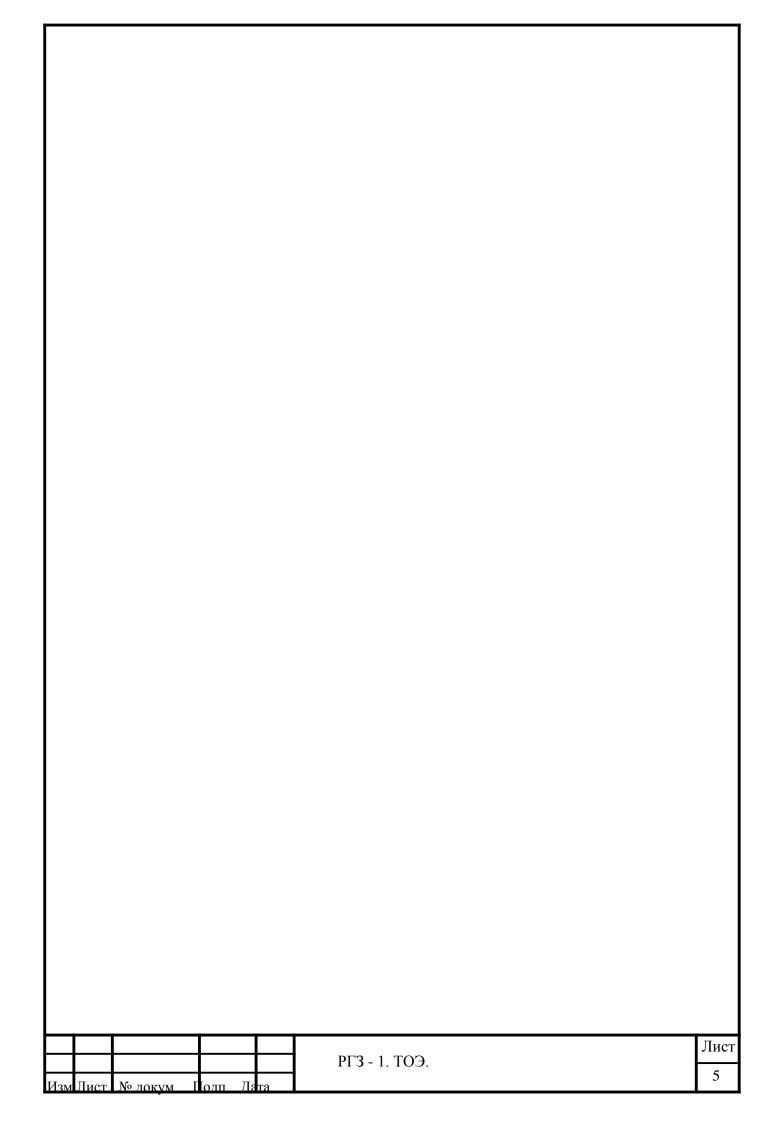

- 6. Результаты компьютерного анализа и аналитического расчета токов, полученные в 3, 4 и 5 пунк-тах задания записать в таблицу и сравнить между собой.
- 7. Используя пакет *Scilab*, построить потенциальные диаграммы для двух произвольно выбранных электрических контуров, каждый из которых содержит не менее трех ветвей и не менее одного источника ЭДС.
- 8. Составить баланс мощностей в исходной схеме. Вычислив суммарную мощность, генерируемую всеми источниками цепи, и суммарную мощность, потребляемую всеми участками цепи, еще раз убедиться в правильности решения задачи.

Таблица 1 Последняя цифра 0 2 3 4 5 7 8 9 1 6 номера варианта Узел для подключения b c d c \boldsymbol{b} d e e c проводника q Узел для подключения c d e b c b e d b C проводника *r* Величина 10 25 100 150 200 100 150 50 50 200 сопротивления R_1 , Ом Величина ЭДС E_1 , В 200 100 150 200 100 300 100 100 400 50 Предпоследняя цифра 2 5 7 8 0 1 3 4 6 9 номера варианта Узел для подключения b d b d c a e \boldsymbol{a} \boldsymbol{e} C проводника *s* Узел для подключения d d b b c e a e \boldsymbol{c} a проводника tВеличина 50 50 75 20 25 150 100 25 20 150 сопротивления R_2 , Ом Величина ЭДС E_2 , В 200 100 200 50 150 100 300 100 100 300

УКАЗАНИЕ: При выполнении задания использовать современные программно-аппаратные средства. Для вычислительного эксперимента использовать пакет символьной математики Scilab, для виртуального компьютерного – Qucs.

					-	
						Лист
					РГЗ - 1. ТОЭ	
					PI 3 - 1. 10 <i>9</i>	2
Иом	Пиот	№ локум. Т	Іолп. Ла	та		3
V1.5 V	JINCI	JNº /IOKVIVI. I	10/111. /10	14		

2. СХЕМА ЭЛЕКТРИЧЕСКОЙ ЦЕПИ



Доработать схему в соответствии с заданием для своего варианта Рис. 2

3. МАТЕМАТИЧЕСКАЯ МОДЕЛЬИССЛЕДУЕ МОЙЛЭЦ, СОСТАВЛЕННАЯ НА ОСНОВЕ ЗАКОНОВ КИРХГОФА

4.РАСЧЕТТОКОВВЕТВЕЙЛЭЦ ПОСТОЯННОГОТОКА МЕТОДОМ КОНТУРНЫХ ТОКОВ

				\perp	РГЗ - 1. ТОЭ.2013	Лист
Изм	Лист	№ локум. І	Іолп. Ла	та	r13-1.10 <i>3.</i> 2013	4

