
Construction of High Rate Run-Length Limited
Codes Using Arithmetic Decoding

Andrey Fionov and Boris Ryabko
Siberian State University of Telecommunications and Information Sciences

Institute of Computational Technologies SB RAS
Novosibirsk, Russia

Email: a.fionov@ieee.org, boris@ryabko.net

Abstract—We suggest an approach to constructing low-
redundant RLL (d, k)-codes whose complexity does not depend
on the code length and is determined solely by the achievable
redundancy r, the time and space complexity being O(log2(1/r))
and O(log(1/r)), respectively, as r → 0. First we select code-
words whose combinations may constitute all (d, k)-constrained
sequences of any length. Then we use arithmetic decoding to
produce these codewords with (or close to) optimal probabilities
from an input sequence. The coding algorithms and estimates of
performance are provided.

I. INTRODUCTION

In many data transmission and storage systems, e.g., those
based on optical fibers or magnetic recording, there is a need in
modulation codes with constraints on the maximum lengths of
runs of consecutive like symbols. A binary run-length limited
(RLL) (d, k)-code is defined as a uniquely decodable sequence
of bits in which the length of any run of ones between zeros is
at least d and at most k (sometimes zeros and ones interchange
their roles, but this is only a matter of convention).

In the process of RLL encoding, an unconstrained input se-
quence of m bits, m ≥ 1, is reversibly converted into a (d, k)-
constrained sequence of n bits, n > m. The performance of
an RLL code is usually measured by the code rate

Rn = m/n.

It is sufficient for fixed-to-fixed codes. For a more general
class of variable-length RLL codes, it makes sense to define
the limit code rate

R = lim
n→∞

Rn. (1)

The maximum achievable code rate C, or coding capacity, is
defined as

lim
n→∞

logN(n)

n
, (2)

where N(n) is the number of (d, k)-constrained sequences of
length n. One can see that R ≤ C since it is not possible
to represent N(n) sequences by less than logN(n) bits. The
redundancy of an RLL code may be defined as the quantity

r = C −R. (3)

We are interested in constructing RLL codes with r → 0.
The design of RLL codes has a long history, see [1] for a

good survey. We can roughly divide the proposed methods into
two categories: those based on enumeration of combinatorial

objects and those using special ad-hoc coding constructions.
Combinatorial methods are block-oriented and thus, as other
block RLL codes, are subject to additional constraints in
maximal runs of ones on the left and right sides of the block.
This is essential for concatenated blocks to have a property of
(d, k)-constrained sequences. The rates of enumerative codes
are usually close to capacity with r = O(1/n), where n is the
block size. But their computational complexity is relatively
high. The most efficient method of enumeration for (d, k)-
constrained coding was recently suggested in [2], [3] with time
and space complexities being O(log3 n log log n) and O(n),
respectively, as n→∞.

Special ad-hoc coding constructions are numerous. One
of the most recent work [4] suggests several methods of
constructing block RLL codes with fixed rate Rn = (n−1)/n
by using a sequence replacement technique. Another paper [5]
describes the same rate codes constructed from nibbles with
the aid of numerical base conversion. The suggested codes are
computationally efficient for small blocks, yet the redundancy
is quite noticeable. For example, the highest achievable rate
for (0, 3)-codes from [4] (with left and right constraints) is
8/9 = 0.89 for the maximal block size n = 9, whereas the
capacity for this code is 0.95. So the redundancy is 0.06.

An attempt to attain performance of enumerative codes
while preserving low computational complexity was made in
[6] with a kind of approximate enumerative coding involving
floating point computations. The method was further elabo-
rated in a number of papers, e.g., [7]. The time complexity of
these schemes is O(n log n) and space complexity is O(n) as
n→∞.

In this paper, we suggest an approach to constructing low-
redundant RLL codes whose complexity does not depend at
all on the code length n, so the time of encoding/decoding and
the memory size are O(1) as n→∞, and is determined solely
by the achievable redundancy, the time and space complexity
being O(log2(1/r)) and O(log(1/r)), respectively, as r →
0. The idea of construction is the following. We first select
the codewords whose combinations may constitute all (d, k)-
constrained sequences of any length. Then we use arithmetic
decoding to produce these codewords with optimal (or close
to optimal) probabilities from an input sequence.

It is essential for the proposed method that the bits of input
unconstrained sequence be equiprobable and independent. It is

_______2012 XIII INTERNATIONAL SYMPOSIUM ON PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS

978-1-4673-0170-1/12/$31.00 ©2012 IEEE



a common assumption, see, e.g., [8], because in modern sys-
tems the data transmitted via fiber-optic channels or prepared
for recording are usually compressed and/or encrypted and,
hence, indistinguishable from completely random bits. On the
other hand, if the input sequence is somehow biased and/or is
not binary, we can add a special encoder as the first stage of
the scheme which converts this input sequence into one needed
for the main stage of our (d, k)-coding method. We shall not
consider this scheme in details because its implementation is
quite obvious.

The paper is organized as follows. In Section 2 we present
the ideas of our method and prove its main properties. The
aspects of practical implementation and achieved performance
are considered in Section 3.

II. THE ESSENCE OF THE METHOD

A. Constructing a (0, k)-code

Consider the code alphabet A = {a0, a1, . . . , ak} whose
symbols (codewords) are the following binary sequences:

a0 = 0, a1 = 10, . . . , ak = 1 . . . 1︸ ︷︷ ︸
k

0.

It is clear that any combination of these codewords will
produce a (0, k)-constrained code. It is also true that any
(0, k)-constrained sequence can be represented as a word over
A. For example, a (0, 3)-constrained sequence 0100110001110
can be represented as a word a0a1a0a2a0a0a3. The mapping
rule is simple:

1 . . . 1︸ ︷︷ ︸
i

0 −→ ai, i ≥ 0.

So the alphabet A can be used to construct all (0, k)-
constrained infinite sequences.

Constructing sequences from the symbols of A is exactly
the channel coding problem first considered by Shannon in
[9]. The channel capacity of the code over A equals the coding
capacity of (0, k)-code

C = logX0,

where X0 is the greatest real solution of the characteristic
equation

1

X
+

1

X2
+ · · ·+ 1

Xk+1
= 1. (4)

Let p = 1/X0 and set the probability distribution

P =
[
p0 = p, p1 = p2, . . . , pk = pk+1

]
(5)

over A, i.e. pi = Pr(ai). Now we are ready to solve the
(0, k)-coding problem: we shall encode the input sequence
u1u2u3 . . . using the codewords of A in such a way that the
codewords appear exactly according to probability distribution
P . Let us show how to do that with the aid of source coding
techniques.

A source encoder ϕ converts a message x1x2x3 . . . of
symbols over some alphabet A with a specified probability

distribution P into a binary code sequence y1y2y3 . . . . We
write this as

ϕA,P (x1x2x3 . . .) = y1y2y3 . . . .

The corresponding decoder ϕ−1, given the same A and P ,
recovers the source message from the code sequence:

x1x2x3 . . . = ϕ−1
A,P (y1y2y3 . . .).

Suppose that the encoder we are using is an entropy encoder,
i.e., it compresses messages down to the entropy of P with
zero redundancy. In this case any code bit yi will be inde-
pendent of other code bits and will appear with probabilities
Pr(yi = 0) = Pr(yi = 1) = 1/2, which we call “completely
random”. Now if we feed the decoder with any sequence
of completely random bits u1u2u3 . . ., it will produce some
sequence v1v2v3 . . . = ϕ−1

A,P (u1u2u3 . . .) which inevitably
will consist of symbols from A and obey the distribution P .
And this is what we need to make our (0, k)-code. Of course,
ϕA,P (v1v2v3 . . .) will be equal to u1u2u3 . . . and by this way
we can decode the (0, k)-code.

Denote by H(P ) the entropy of distribution P ,

H(P ) = −
k∑

i=0

pi log pi.

Denote by L(P ) the average codeword length,

L(P ) =
k∑

i=0

pi(i+ 1).

Consider the ratio H(P )/L(P ). It is the entropy of one code
bit provided that the length of code sequence is not limited.

Proposition 1: For any probability distribution P the limit
rate of (0, k)-code constructed by the described method

R =
H(P )

L(P )
.

Proof: Let the sequence u1 . . . um is encoded into
v1 . . . vn. Since the encoding is one-to-one the entropies of
both sequences are equal,

H(u1 . . . um) = H(v1 . . . vn).

But with n→∞

H(v1 . . . vn) = n
H(P )

L(P )
.

According to our assumptions about the input sequence,

H(u1 . . . um) = m.

So
m

n
=

H(P )

L(P )

as n→∞.
Proposition 2: For the probability distribution (5) the limit

rate of (0, k)-code constructed by the described method equals
the coding capacity, R = C.

_______2012 XIII INTERNATIONAL SYMPOSIUM ON PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS

---------------------------------------------------------------------------- 23 ----------------------------------------------------------------------------



Proof: According to Proposition 1, R = H(P )/L(P ).
From (5) we have

H(P )

L(P )
=
−(p log p+ 2p2 log p+ · · ·+ (k + 1)pk+1 log p)

p+ 2p2 + · · ·+ (k + 1)pk+1

= − log p = logX0 = C.

B. Constructing a (d, k)-code

To construct a (d, k)-code for 0 < d < k consider the code
alphabet A = {ad, ad+1, . . . , ak} whose symbols (codewords)
are the following binary sequences:

a0 = 01 . . . 1︸ ︷︷ ︸
d

, a1 = 01 . . . 1︸ ︷︷ ︸
d+1

, . . . , ak = 01 . . . 1︸ ︷︷ ︸
k

.

Combinations of these codewords will produce a (d, k)-
constrained code.

To construct an optimal (d, k)-code, find the greatest real
solution X0 of the characteristic equation

1

Xd+1
+

1

Xd+2
+ · · ·+ 1

Xk+1
= 1 (6)

and set the probability distribution

P =
[
pd = pd+1, pd+1 = pd+2, . . . , pk = pk+1

]
over A, where p = 1/X0. All further constructions and
arguments are essentially the same as for (0, k)-code.

III. PRACTICAL IMPLEMENTATION

For practical implementation of our method we suggest to
substitute an ideal entropy coder by arithmetic coder. Arith-
metic coding is well-known for its extremely low redundancy
at high computational efficiency. We use a method which is
close to [10] and [11] with small optimizations relevant to
our application. For the sake of consistency we describe the
encoding and decoding algorithms. The main our topic is,
however, to discuss the impact on redundancy of constructed
RLL codes.

We start with the computation of X0, the greatest real root
of characteristic equation for the required code, and the cor-
responding probability distribution P . For ease of description,
denote the size of alphabet A by s, s = k + 1− d, and index
the symbols and corresponding probabilities from 1 to s.

Compute from P the cumulative probabilities Q needed for
arithmetic coding and defined as following:

Q1 = 0, Qi = Qi−1 + Pi−1, i = 2, 3, . . . , s.

Define also Q̂i = Qi+Pi. Then any symbol ai is represented
by the interval [Qi, Q̂i) in the cumulative distribution. Note
that Q̂s = 1.

The next step is to approximate the cumulative probabilities
by binary fractions of the form q/2t, where t is the size (in
bits) of internal registers used in coding. Since p is always
greater than 1/2, the least probability pk+1 can be represented
with k + 1 bits in the numerator. But as the interval where
all symbols are to be distributed in arithmetic coding may

be almost as small as 2t−2, the size of registers must satisfy
the condition t − 2 ≥ k + 1, that is t ≥ k + 3. Notice that
the initial approximation of cumulative probabilities and their
further implicit approximation via mapping onto integer-scaled
intervals in arithmetic encoding, are the only causes of coding
redundancy.

Let us now describe the algorithm of arithmetic coding.
Introduce some operations: a div b denotes integer division
with truncation; msb(b) denotes the most significant bit of b;
pmsb(b) denotes the bit of b preceding to the most significant
one. Denote by l and h the t-bit registers used to represent
the lower and higher bounds of the current coding interval,
h being inclusive, i.e., the greatest integer belonging to the
interval. Denote by f a special counter used in the step of
renormalization. Initially, l = 0, h = 2t − 1, f = 0.

Encoding of each subsequent symbol is done by the follow-
ing procedure. Let the current symbol be ai and the cumulative
interval be [qi, q̂i). Compute new interval bounds for this
symbol:

h← l + (q̂i(h− l + 1) div 2t)− 1,

l← l + qi(h− l + 1) div 2t.

Then perform renormalization of the interval with possible
output of some code bits:

while msb(l) = msb(h) do
output bit msb(l),
output f bits 1−msb(l), f ← 0,
l← 2l, h← 2h+ 1 (mod 2t);

while pmsb(l) = 1 and pmsb(h) = 0 do
f ← f + 1,
l← 2l, h← 2h+ 1 (mod 2t);

msb(l)← 0, msb(h)← 1.

The described above encoding step may be applied arbitrary
long. Nevertheless, if the encoded sequence is ended, we need
to finalize the remaining interval: output pmsb(l), then output
f + 1 bits 1− pmsb(l).

Let us now describe the algorithm of decoding. The decoder
needs one extra t-bit register w to store current code bits.
Initially, l = 0, h = 2t − 1, w = first t code bits.

The following algorithm decodes next one symbol at each
invocation. Set

z ← (2t(w − l + 1)− 1) div (h− l + 1).

Find ai ∈ A for which qi ≤ z < q̂i. Compute new interval
bounds:

h← l + (q̂i(h− l + 1) div 2t)− 1,

l← l + qi(h− l + 1) div 2t.

Perform renormalization:

while msb(l) = msb(h) do
w ← 2w + next code bit,
l← 2l, h← 2h+ 1 (mod 2t);

b← msb(w);
while pmsb(l) = 1 and pmsb(h) = 0 do

_______2012 XIII INTERNATIONAL SYMPOSIUM ON PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS

---------------------------------------------------------------------------- 24 ----------------------------------------------------------------------------



TABLE I
MAXIMUM REDUNDANCIES OF SOME (0, k)-CODES OBTAINED BY

MODELING FOR t = 32

k max r k max r
4 0
6 8 · 10−17 8 7 · 10−16

10 2 · 10−15 12 9 · 10−15

14 4 · 10−14 16 1 · 10−13

18 6 · 10−13 20 2 · 10−12

w ← 2w + next code bit,
l← 2l, h← 2h+ 1 (mod 2t);

msb(w)← b, msb(l)← 0, msb(h)← 1.

The decoded symbol is ai.
Let us discuss the problem of redundancy. First, as it was

already noted, we have to approximate the optimal probabili-
ties by finite binary fractions which can be done with accuracy
1/2t. Second, operations div in encoder and decoder further
slightly change these approximate values. Although we may
to some extent control the way of initial approximation, the
changes of probabilities in arithmetic coder are more intricate
and cannot be effectively controlled. We can only state that
the maximum error in each probability, which arises when the
interval after renormalization has the smallest size, cannot be
greater than 1/2t−2.

As a result, we have, in effect, another entropy H(P ∗) and
another average codeword length L(P ∗). They cause the code
rate different from capacity and redundancy of RLL code

r =
H(P )

L(P )
− H(P ∗)

L(P ∗)
.

When we use the simplest approximation of probabilities by
truncation, H(P ∗) becomes sometimes smaller and sometimes
greater than H(P ) which hinders to derive an analytic estimate
of redundancy. However, we can use a computer program to
experimentally model all possible deviations for reasonably
small alphabets, e.g., when k ≤ 20, t = 32, and inaccuracy is
2−29. The results for (0, k)-codes are presented in Table 1.

An analytic estimate of redundancy can be easily obtained
provided the following conjecture is true: the initial approx-
imation of probabilities can be made within the accuracy
of 1/2t−3 so that to ensure the condition H(P ∗) ≥ H(P )
regardless the deviations of the probabilities caused by the
encoder. In view of this conjecture the estimate of redundancy
is given by the following

Proposition 3: Provided that H(P ∗) ≥ H(P ) the redun-
dancy of (0, k)-code satisfies the inequality

r <
k2 + 4k + 3

2t−2
.

Proof: First find an upper bound for L(P ∗). For that
suppose (pessimistically) that any p∗ < p+ 1/2t−3. Then

L(P ∗) =
k∑

i=0

p∗i (i+ 1)

<
k∑

i=0

pi(i+ 1) +
1 + 2 + · · ·+ k + 1

2t−3

= L(P ) +
k2 + 4k + 3

2t−2
=

2t−2L(P ) + k2 + 4k + 3

2t−2
.

The following chain of equalities and inequalities proves the
proposition:

r = C − H(P ∗)

L(P ∗)
< C − H(P )2t−2

L(P )2t−2 + k2 + 4k + 3

=
CL(P )2t−2 + C(k2 + 4k + 3)−H(P )2t−2

L(P )2t−2 + k2 + 4k + 3

=
C(k2 + 4k + 3)

L(P )2t−2 + k2 + 4k + 3
<

C(k2 + 4k + 3)

L(P )2t−2

<
k2 + 4k + 3

2t−2
.

The estimate of redundancy given by Proposition 3 seems
to be quite pessimistic. Indeed, for t = 32 and k = 20 we
calculate that r < 4 · 10−7. The figures of Table 1 present
more optimistic data.

Yet, the estimate of Proposition 3 enables us to speak
of complexity. The complexity of encoding and decoding is
determined by multiplications of t-bit integer numbers (all
other operations are inferior). If we use square-time algorithms
of multiplication (which is adequate for small t), the estimates
of time and space complexities are:

T = O(t2) = O(log2 1/r), S = O(t) = O(log 1/r), r → 0.

REFERENCES

[1] K. A. S. Immink, “A survey of codes for optical disc recording,” IEEE
Journal on Selected Areas of Communications, Special Issue on Signal
processing and coding for digital storage, Vol. 19, pp. 751-764, 2001.

[2] Yu. Medvedeva and B. Ryabko, “Fast enumeration of run-length-limited
words,” 2009 IEEE Int. Symp. on Inform. Theory (ISIT2009), Seoul,
Korea, 2009, pp. 640-643.

[3] Yu. S. Medvedeva and B. Ya. Ryabko, “Fast enumeration algorithm
for words with given constraints on run lengths of ones,” Problems of
Information Transmission, Vol. 46, No. 4, pp. 369-378, 2010.

[4] A. van Wijngaarden and K. A. S. Immink, “Construction of maximum
run-length limited codes using sequence replacement techniques,” IEEE
Journal on Selected Areas of Communications, Special Issue on Signal
processing and coding for digital storage, Vol. 28, pp. 200–207, 2010.

[5] K. A. S. Immink, “High-rate maximum runlength constrained coding
schemes using base conversion,” Proc. ISITA 2010, Taichung, Taiwan,
Oct. 2010.

[6] K. A. S. Immink, “A practical method for approaching the channel
capacity of constrained channels,” IEEE Trans. Inform. Theory, Vol. 43,
No. 5, pp. 1389–1399, 1997.

[7] I. Tal, T. Etzion and R. M. Roth, “On row-by-row coding for 2-D
constraints,” arXiv: 0808.0596v1 [cs.IT], 2008.

[8] Y. Sankarasubramaniam and S. W. McLaughlin, “Fixed-rate maximum-
runlength-limited codes from variable-rate bit stuffing,” IEEE Trans.
Inform. Theory, Vol. 53, No. 8, pp. 2769–2790, 2007.

[9] C. E. Shannon, “A mathematical theory of communication,” Bell Sys.
Tech. J., vol. 27, pp. 379–423, pp. 623–656, 1948.

[10] I. H. Witten, R. Neal and J. G. Cleary, “Arithmetic coding for data
compression,” Communications of the ACM, Vol. 30, No. 6, pp. 520–
540, 1987.

[11] B. Ya. Ryabko and A. N. Fionov, “An efficient method for adaptive arith-
metic coding of sources with large alphabets,” Problems of Information
Transmission, Vol. 35, No. 4, pp. 95–108, 1999.

_______2012 XIII INTERNATIONAL SYMPOSIUM ON PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS

---------------------------------------------------------------------------- 25 ----------------------------------------------------------------------------


