ЭЛЕКТРОТЕХНИКА

домашние и курсовые задания

ИЗДАНИЕ ВТОРОЕ, ИСПРАВЛЕННОЕ

Министерство образования и науки Российской Федерации Балтийский государственный технический университет «Военмех» Кафедра электротехники

ЭЛЕКТРОТЕХНИКА

ДОМАШНИЕ И КУРСОВЫЕ ЗАДАНИЯ

Издание второе, исправленное

Под редакцией П.А. Галайдина

Санкт-Петербург 2007 Составители: <u>А.П. Лысенко, д-р техн. наук, проф.</u>; И. К. Желанкина, канд. техн. наук, доц.; С. А. Гусев, канд. техн. наук, доц.; С. Г. Костенко, канд. техн. наук, доц.; Л. Ф. Погромская, канд. техн. наук, проф.; Э. Л. Мальц, канд. техн. наук., доц.; Ю.Н. Мустафаев, доц.; Л.А. Чередниченко, канд. техн. наук., доц.; О.С.Тораманян, канд. техн. наук, доц. Подготовка к переизданию: С. А. Гусев, Ю. Н. Мустафаев

УДК 621.3.011.7 (076) Э10

Электротехника: домашние и курсовые задания. Изд. Э10 2-е, испр./ Под ред. П.А.Галайдина; Балт. гос. техн. ун-т.– СПб., 2007.– 80 с.

> Настоящее пособие содержит девять заданий по расчету электрических и магнитных цепей с подробными методическими указаниями по выполнению и оформлению. Приведены способы решения некоторых задач с помощью прикладной программы MathCAD.

> Предназначено для студентов, изучающих курсы «Теоретические основы электротехники», «Основы теории цепей», «Общая электротехника», «Электротехника и электроника».

УДК 621.3.011.7 (076)

Рецензент канд. техн. наук, доц. кафедры Н1 Е. Б. Коротков

Утверждено редакционно-издательским советом университета

> © БГТУ, 2007 © Составители, 2007

Правила оформления домашнего задания и курсовой работы

В состав работы входят титульный лист, оглавление, постановка задачи, введение, основная часть, заключение, список литературы.

Титульный лист :

- полное наименование министерства, учебного заведения;
- название вида документа;
- название темы;

• сведения об исполнителе (Ф.И.О. студента, номер группы, подпись),

• сведения о преподавателе (руководителе) (Ф.И.О., ученая степень, ученое звание, подпись);

• наименование места и года выполнения.

Оглавление – перечень структурных элементов задания с указанием номеров страниц:

- введение;
- постановка задачи;
- главы, параграфы, пункты, подпункты;
- заключение;
- приложения;
- список литературы.

Постановка задачи – схема цепи, исходные данные и определяемые физические величины.

Введение – цель работы и методы ее достижения.

Основная часть – основные расчеты, пояснения, графические построения.

Заключение – выводы, характеризующие в сжатом виде итоги проделанной работы.

Приложения – реализации алгоритмов на ПК.

Список литературы. Библиографические описания документов в списке литературы оформляются в соответствии с требованиями ГОСТ 7.1, ГОСТ 7.16, ГОСТ 7.34, ГОСТ 7.40. Библиографические описания располагают в алфавитном порядке по первым их элементам – авторским заголовкам (фамилии и инициалы авторов) или по основным заглавиям.

Задание 1 РАСЧЕТ УСТАНОВИВШЕГОСЯ ПРОЦЕССА В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА С ОДНИМ ИСТОЧНИКОМ ЭДС

Постановка задачи

В цепи, представленной на рис. 1.1, действует источник (один из пяти возможных) синусоидальной ЭДС: $e(t)=E_m \sin(\omega t+\psi)$ В.

Амплитуда ЭДС $E_m = 179$ В, начальная фаза – в табл. 1.1. При заданной частоте ω модули сопротивлений элементов цепи равны: z_1 =40 Ом, z_2 =30 Ом, z_3 =40 Ом, z_4 =50 Ом, z_5 =60 Ом. Характер и нумерация сопротивлений заданы в табл. 1.1 и 1.2 соответственно.

. .

					18	юлица I. I			
Вари- ант		Характер сопротивлений							
1	R	X_L	X_C	R	X_L	0			
2	X_L	X_C	R	X_L	R	30			
3	X_C	R	X_L	R	X_L	60			
4	R	X_L	R	X_L	X_C	120			
5	X_L	R	X_L	X_C	R	180			
6	X_L	R	X_C	X_L	R	-10			
7	X_L	X_C	R	R	X_L	-40			
8	X_C	R	X_L	X_L	R	-70			
9	R	X_L	R	X_C	X_L	-110			
10	R	X_L	R	R	X_C	-150			
11	X_L	R	R	X_L	X_C	20			
12	X_C	X_L	X_L	R	R	50			
13	R	R	X_C	X_L	X_L	80			
4									

_					Оконча	ние табл. 1.1
Вари-		Характер с	опротивлен	ий		ψ, град
ант						
14	R	X_L	X_L	X_C	X_L	120
15	X_L	R	R	R	X_C	150
16	X_C	R	R	X_L	X_L	-20
17	X_L	X_C	X_L	R	R	-50
18	X_C	X_L	R	R	X_L	-80
19	X_L	R	R	X_C	X_L	90
20	R	R	X_C	X_C	X_L	-180
21	X_L	R	X_C	R	X_L	60
22	R	X_C	X_L	R	X_L	-60
23	X_C	X_L	R	X_L	R	35
24	R	X_L	X_L	R	X_C	40
25	X_L	X_L	R	X_C	R	15
26	X_L	X_L	X_C	R	X_C	-65
27	R	X_L	X_C	X_L	R	20
28	R	X_L	X_L	X_C	R	50
29	R	X_C	X_L	R	X_C	-50
30	X_C	R	R	X_L	R	25

Таблица 1.2

Вари- ант п/п		Нуме	ерация сопротив	злений	
1	Z 1	Z2	Z 3	Z 4	Z 5
2	Z 2	Z 3	Z 4	Z 5	Z 1
3	Ζ3	Z 4	Z 5	Z 1	Ζ2
4	Z 4	Z 5	Z 1	Z 2	Z 3
5	Z 5	Z 1	Ζ2	Z 3	Z 4
6	z_1	Z 3	Ζ2	Z 5	Ζ4
7	Z 3	Z 2	Z 5	Ζ4	Z 1
8	Z 2	Z 5	Z 4	Z 1	Ζ3
9	Z 5	Z 4	Z 1	Ζ3	Ζ2
10	Z 4	z_1	Z 3	Z 2	Ζ5
11	z_1	Z 5	Ζ2	Ζ4	Ζ3
12	Z 5	Z 2	Z 4	Z 3	Z 1
13	Z 2	Z 4	Z 3	Z 1	Z 5

Номер варианта состоит из трех чисел, например: 25-7-1. Первое и второе числа указывают номера строк в табл. 1.1 и 1.2 соответственно, третье число – номер ветви, в которой включен источник ЭДС (остальные ЭДС отсутствуют, т.е. закорочены).

Для указанного варианта 25-7-1 $Z_3 = jX_L = j40$ Ом, $Z_2 = jX_L = = j30$ Ом, $Z_5 = R = 60$ Ом, $Z_4 = -jX_C = -j50$ Ом, $Z_1 = R = 40$ Ом, $\psi = 15^\circ$, источник включен в первую ветвь.

Содержание задания

1. Рассчитать токи и напряжения на всех участках цепи по законам Кирхгофа в комплексной форме с помощью прикладной математической программы (MathCAD, MathLab и др).

2. Рассчитать токи и напряжения на всех участках цепи методом эквивалентных преобразований.

3. Построить векторные диаграммы токов и напряжений.

4. Проверить баланс активных и реактивных мощностей. Допустимая погрешность выполнения баланса мощностей 2%.

5. Определить показания измерительных приборов: амперметра, вольтметра и ваттметра.

6. Методом эквивалентного генератора определить ток в одной из ветвей схемы (номер ветви задается преподавателем).

Методические указания

Рассмотрим ход выполнения задания на примере варианта 30-13-1. Изображение каждого элемента на схеме должно соответствовать его характеру (R, L, C).

Исходная схема, соответствующая указанному варианту, приведена рис 1.2.

Комплексы сопротивлений элементов имеют значения: $Z_1 = j40 \text{ Om}$, $Z_2 = -j30 \text{ Om}$, $Z_3 = 40 \text{ Om}$, $Z_4 = 50 \text{ Om}$, $Z_5 = 60 \text{ Om}$, комплекс действующего значения ЭДС

$$\mathbf{E} = \frac{E_m}{\sqrt{2}} \cdot e^{j\Psi} = 127e^{j25^{\mathbf{0}}} = 115, 1 + j53, 67 \text{ B}.$$

1. Расчет цепи по законам Кирхгофа.

Выбираем направления токов в ветвях и направления обхода контуров. Цепь содержит пять ветвей и три узла. Система уравнений для комплексов действующих значений токов и напряжений включает пять уравнений, два из которых составлены по первому и три по второму законам Кирхгофа:

$$\begin{array}{c} \mathbf{k}_{1}^{2}-\mathbf{k}_{2}^{2}=0, \\ \mathbf{k}_{3}^{2}-\mathbf{k}_{4}^{2}-\mathbf{k}_{5}^{2}=0, \\ Z_{1}\mathbf{k}_{1}^{2}+Z_{2}\mathbf{k}_{2}^{2}=\mathbf{k}^{2}, \\ -Z_{2}\mathbf{k}_{2}^{2}+Z_{3}\mathbf{k}_{3}^{2}+Z_{4}\mathbf{k}_{4}^{2}=0, \\ -Z_{4}\mathbf{k}_{4}^{4}+Z_{5}\mathbf{k}_{5}^{2}=0. \end{array} \tag{1.1}$$

Подставляя данные, запишем систему уравнений (1.1) в матричной форме $[A] \times [I] = [F]$:

						[.]			
1	-1	-1	0	0		I_1		0	
0	0	1	-1	-1		$\dot{I_2}$		0	
j40	- <i>j</i> 30	0	0	0	×	I2	=	115,1+ <i>j</i> 53,67	, (1.2)
0	j30	40	50	0				0	
0	0	0	-50	60		<i>I</i> ₄		0	
						I_5			

где квадратная матрица [A] – обобщенная матрица коэффициентов, [I] – вектор-столбец токов ветвей цепи, [F] – вектор-столбец входных воздействий.

Составленное матричное уравнение (1.2) решаем с помощью прикладной программы MathCAD:

 $[I] = [A]^{-1} \times [F]$ $I = \begin{pmatrix} 5,988 - 3,224i \\ 6,194 - 0,462i \\ -0,206 - 2,762i \\ -0,112 - 1,507i \\ -0,094 - 1,255i \end{pmatrix}.$

Напряжения на элементах определяем по закону Ома в комплексной форме. 2. Расчет электрической цепи методом эквивалентных преобразований.

С помощью метода эквивалентных преобразований находим эквивалентные сопротивления участков цепи и ее входное сопротивление. При оформлении работы следует привести все промежуточные схемы, полученные при эквивалентных преобразованиях, с графическим отображением характера элементов.

Все результаты следует записывать в показательной и в алгебраической формах:

$$\begin{split} & Z_{45} = \frac{Z_4 Z_5}{Z_4 + Z_5} = \frac{50 \cdot 60}{50 + 60} = 27,27 \text{ OM}, \\ & Z_{345} = Z_3 + Z_{45} = 40 + 27,27 = 67,27 \text{ OM}, \\ & Z_{2345} = \frac{Z_2 Z_{345}}{Z_2 + Z_{345}} = \frac{(-j30) \cdot 67,27}{-j30 + 67,27} = 27,40 e^{-j65,96^\circ} = 11,16 - j25,02 \text{ OM}, \\ & Z_{\text{BX}} = Z_{12345} = Z_1 + Z_{2345} = j40 + 11,16 - j25,02 = \\ & = 11,16 + j14,98 = 18,68 e^{j53,31^\circ} \text{ OM}. \end{split}$$

По закону Ома

$$\mathbf{A}_{1}^{\mathbf{a}} = \frac{\mathbf{A}_{1}^{\mathbf{a}}}{Z_{\text{BX}}} = \frac{127e^{j25^{\mathbf{0}}}}{18,68e^{j53,31^{\mathbf{0}}}} = 6,798e^{-j28,31^{\mathbf{0}}} = 5,985 - j3,224 \text{ A}.$$

Тогда

$$U_1^{\mathbf{a}} = Z_1 \mathbf{A}_1^{\mathbf{a}} = j40.6,798e^{-j28,31^{\mathbf{o}}} = 40e^{j90} \cdot 6,798e^{-j28,31^{\mathbf{o}}} = 271,9e^{j61,69^{\mathbf{o}}} = 128,9+j239,4 \text{ B}.$$

Дальнейший расчет проводится по закону Ома:

$$U_{2}^{\mathbf{k}} = Z_{2345} \cdot \mathbf{k}_{1}^{\mathbf{k}} = 27,40e^{-j65,96^{\mathbf{0}}} \cdot 6,798e^{-j28,31^{\mathbf{0}}} = 186,3e^{-j94,27^{\mathbf{0}}} = -13,87 - j185,8 \text{ B},$$

$$\mathbf{k}_{2}^{\mathbf{k}} = \frac{U_{2}^{\mathbf{k}}}{Z_{2}} = \frac{186,3e^{-j94,27^{\mathbf{0}}}}{30e^{-j90^{\mathbf{0}}}} = 6,209e^{-j4,27^{\mathbf{0}}} = 6,192 - j0,4623 \text{ A},$$

$$\mathbf{k}_{2}^{\mathbf{k}} = \frac{U_{2}^{\mathbf{k}}}{186,3e^{-j94,27^{\mathbf{0}}}} = 186,3e^{-j94,27^{\mathbf{0}}} = -126,209e^{-j4,27^{\mathbf{0}}} = -126,209e^{-j4,27$$

$$\mathbf{P}_{3} = \frac{6^{\circ}2}{Z_{345}} = \frac{180,3e^{\circ}}{67,27} = 2,769e^{-j94,27^{\circ}} = -0,2062 - j2,761 \,\mathrm{A}.$$

Проверка. $\mathbf{k}_1 = \mathbf{k}_2 + \mathbf{k}_3 -$ первый закон Кирхгофа для I узла выполняется.

$$U_{3}^{\bullet} = Z_{3} \cdot f_{3}^{\bullet} = 40 \cdot 2,769e^{-j94,27^{\bullet}} = 110,76e^{-j94,27^{\bullet}} = -8,247 - j110,45 \text{ B},$$

$$U_{4}^{\bullet} = U_{5}^{\bullet} = Z_{45} \cdot f_{3}^{\bullet} = 27,27 \cdot 2,769e^{-j94,27^{\bullet}} = 75,51e^{-j94,27^{\bullet}} = -5,622 - j75,30 \text{ B},$$

$$f_{4}^{\bullet} = \frac{U_{4}^{\bullet}}{Z_{4}} = \frac{75,51e^{-j94,27^{\bullet}}}{50} = 1,510e^{-j94,27^{\bullet}} = -0,1124 - j1,506 \text{ A},$$

$$f_{5}^{\bullet} = \frac{U_{5}^{\bullet}}{Z_{5}} = \frac{75,51e^{-j94,27^{\bullet}}}{60} = 1,259e^{-j94,27^{\bullet}} = -0,09374 - j1,255 \text{ A}.$$

Проверка. $P_3 = P_4 + P_5 -$ первый закон Кирхгофа для II узла выполняется.

Найденные в п. 2 значения комплексных величин токов и напряжений на всех участках цепи в алгебраической и показательной форме, а также их мгновенные значения приведены в табл.1.3. Сравниваем их с результатами расчета п.1.

Таблица 1.3

Расчет: величи	ная на	Комплексные зна Алгебраиче- ская форма	чения Показательная форма	Мгновенные значения
Å	А	5,985– <i>j</i> 3,224	6,798 <i>e</i> ^{-j28,31⁰}	$i_1(t)=9,614\sin(\omega t-28,31^0)$
			•••	•••
Å 5	А	-0,09374- <i>j</i> 1,255	1,259 <i>e</i> ^{-j94,27⁰}	$i_5(t)=1,780\sin(\omega t-94,27^{0})$
<i>U</i> ⁸ 1	В	129,0+ <i>j</i> 239,4	271,9 <i>e ^{j61,68}</i>	$u_1(t)=384,5\sin(\omega t+61,68^{0})$
		•••	•••	•••
U ⁸ 5	В	-5,622- <i>j</i> 75,30	75,51e ^{-j94,27} °	$u_5(t)=106,8\sin(\omega t-94,27^{0})$

3. Построение векторной диаграммы токов и напряжений.

Для построения векторной диаграммы (рис 1.3) используют алгебраическую форму представления комплексов действующих значений токов и напряжений. Векторные диаграммы токов и напряжений должны удовлетворять уравнениям (1.2), составленным по законам Кирхгофа. Построения выполняют на миллиметровке, используя масштабы, соответствующие ГОСТ. Желательно токи и напряжения выделять разными цветами.

4. Проверка баланса активных и реактивных мощностей.

Проверка баланса мощностей выполняется с помощью уравнения

$$\mathbf{E}^{*}I_{\text{MCT}} = \sum_{k=1}^{5} Z_k I_k^2,$$

где I_{uct} – сопряженный комплекс тока в ветви, в которую включен источник, E – комплекс ЭДС источника, Z_k , I_k – комплексное сопротивление и действующее значение тока в ветви k.

Для рассмотренного варианта: $I_{\text{ист}} = I_1 = 6,798 e^{j28,31^{\circ}}$ А. Определяем комплекс полной мощности источника:

$$\underline{S}_{\text{HCT}} = \underbrace{B}_{\text{HCT}} = P_{\text{HCT}} + jQ_{\text{HCT}} = 127e^{j25} \cdot 6,798e^{j28,320} = 863,3e^{j53,310} = 515,8+j692,3BA$$

*

Определяем комплекс полной мощности приемников цепи:

$$\underline{S}_{\rm np} = \sum_{k=1}^{5} Z_k I_k^2 = P_{\rm np} + jQ_{\rm np} = j40 \cdot 6,798^2 + (-j30) \cdot 6,209^2 + 40 \cdot 2,769^2 + 50 \cdot 1,510^2 + 60 \cdot 1,259^2 = 515.8 + i692.0 \,({\rm BA}).$$

 $P_{\rm IID} = 515,8 \,\mathrm{BT}, \quad Q_{\rm IID} = 692 \,\mathrm{BAp}.$

Проводим оценку выполнения баланса:

$$\delta P = \frac{\left| P_{\text{ист}} - P_{\text{пр}} \right|}{P_{\text{ист}}} \cdot 100\% = \frac{\left| 515, 8 - 515, 8 \right|}{515, 8} \cdot 100\% = 0\% ;$$

$$\delta Q = \frac{\left| Q_{\text{ист}} - Q_{\text{пр}} \right|}{Q_{\text{ист}}} \cdot 100\% = \frac{\left| 692, 3 - 692, 0 \right|}{692, 3} \cdot 100\% = 0.04\%$$

Полученные расхождения находятся в пределах заданной погрешности.

5. Определение показаний приборов.

Амперметр показывает действующее значение тока $I_2 = I_A = 6,209$ А, вольтметр – действующее значение напряжения $U_4 = U_v = 75,51$ В.

Показание ваттметра определяется произведением действующих значений напряжения и тока на соответствующих обмотках прибора на косинус угла сдвига фаз между ними:

 $P_w = U_2 I_3 \cos(\overline{U}_2, \overline{I}_3) = 186, 3 \cdot 2,769 \cdot \cos 0^{\mathbf{0}} = 515,9 \text{ Bt.}$

6. Расчет тока R_2 методом эквивалентного генератора.

Этот метод предпочтителен при определении тока только в одной из ветвей сложной электрической цепи. При этом остальная часть цепи заменяется эквивалентным активным двухполюсником, называемым эквивалентным генератором (рис.1.4).

Параметрами эквивалентного генератора являются ЭДС E_{3r} и внутреннее сопротивление Z_{3r} .

В процессе расчета определяем ЭДС эквивалентного генератора $\mathcal{B}_{\text{эг}} = \mathcal{B}_{xx}$, где \mathcal{B}_{xx} – напряжение на зажимах разомкнутой ветви *ab* (в рассматриваемом случае Z_2), и внутреннее сопротивление экви-

валентного генератора $Z_{\rm эr}$, равное эквивалентному сопротивлению цепи по отношению к зажимам *ab*. Ток в ветви рассчитываем по формуле

$$\mathbf{k}_2 = \mathbf{k}_{3\Gamma} / (Z_{3\Gamma} + Z_2)$$

6.1. Определение ЭДС эквивалентного генератора (рис.1.5, а).

Ток источника в режиме холостого хода (ветвь с элементом Z₂ разомкнута) равен:

$$\mathbf{P}_{1} = \frac{\mathbf{P}_{2}}{Z_{1} + Z_{345}} = \frac{127e^{j25^{\mathbf{0}}}}{j40 + 67,27} = \frac{127e^{j25^{\mathbf{0}}}}{78,26e^{j30,74^{\mathbf{0}}}} = 1,623e^{-j5,74^{\mathbf{0}}} \,\mathrm{A},$$

где $Z_{345} = Z_3 + Z_{45} = 40 + 27,27 = 67,27$ Ом.

ЭДС эквивалентного генератора

$$\mathbf{B}_{3r} = U_{ab_{xx}}^{\mathbf{a}} = Z_{345} \cdot \mathbf{F}_{1}^{\mathbf{a}} = 67,27 \cdot 1,623 e^{-j5,74^{\mathbf{0}}} = 109,2 e^{-j5,74^{\mathbf{0}}} \text{ B}.$$

6.2. Определение внутреннего сопротивления эквивалентного генератора (рис.1.5, б).

Внутреннее сопротивление эквивалентного генератора относительно точек a и b

$$Z_{ab} = Z_{3r} = \frac{Z_1 Z_{345}}{Z_1 + Z_{345}} = \frac{j40.67,27}{j40+67,27} = 34,38e^{j59,260} = 17,57 + j29,55 \text{ Om}.$$

Искомый ток (см. рис 1.4)

$$\mathbf{P}_{2}^{\mathbf{0}} = \frac{\mathbf{P}_{_{\mathcal{T}}}^{\mathbf{0}}}{Z_{_{\mathcal{T}}} + Z_{2}} = \frac{109, 2^{-j5, 74^{\mathbf{0}}}}{17, 57 + j29, 55 - j30} = \frac{109, 2^{-j5, 74^{\mathbf{0}}}}{17, 58e^{-j1, 47^{\mathbf{0}}}} = 6, 212e^{-j4, 27^{\mathbf{0}}} \text{ A}.$$

Результаты расчетов, выполненных различными методами, практически совпадают.

В заключении следует привести краткие выводы по выполненному расчету.

Задание 2 РАСЧЕТ УСТАНОВИВШЕГОСЯ ПРОЦЕССА В ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА С ДВУМЯ ИСТОЧНИКАМИ ЭДС

Постановка задачи

В цепи, представленной на рис 1.1 (см. задание 1), действуют два (из пяти возможных) источника синусоидальной ЭДС: $e_1(t) = 141\sin \omega t$, В, $e_2(t) = 179\sin(\omega t + \psi)$ В. Модуль сопротивлений элементов цепи $z_1=10$ Ом, $z_2=30$ Ом, $z_3=40$ Ом, $z_4=50$ Ом, $z_5=60$ Ом при частоте f = 50 Гц. Начальная фаза ЭДС ψ и характер сопротивлений заданы в табл. 1.1, нумерация сопротивлений – в табл. 1.2 (см. задание 1).

Номер варианта задается преподавателем в виде четырех чисел, например: 25 -7 - 2 - 3. Первое число указывает номер строки в табл. 1.1 (характер сопротивления), второе – номер строки в табл. 1.2 (положение сопротивлений в цепи), третье и четвертое – номера сопротивлений, последовательно с которыми включены источники ЭДС e_1 и e_2 .

Для указанного в качестве примера варианта $Z_3 = jX_L = j40 \text{ Om}$, $Z_2 = jX_L = j30 \text{ Om}$, $Z_5 = R = 60 \text{ Om}$, $Z_4 = -jX_C = -j50 \text{ Om}$, $Z_1 = R = 10 \text{ Om}$, $\psi = 15^{\circ}$. Источник ЭДС e_1 включен последовательно с сопротивлением Z_2 , источник e_2 – последовательно с сопротивлением Z_3 .

Содержание задания

1. Рассчитать все токи и напряжения следующими методами в комплексной форме:

- по законам Кирхгофа;
- методом контурных токов;
- методом узловых потенциалов.

Результаты расчета комплексов токов в ветвях и напряжений на всех участках цепи методом узловых потенциалов свести в таблицу. Сравнить результаты, полученные разными методами.

2. Построить векторную диаграмму токов и напряжений.

3. Проверить баланс мощностей.

4. Определить показания амперметра, вольтметра и ваттметра.

5. Определить ток в одной из ветвей цепи, не содержащей источника ЭДС, методом эквивалентного генератора (ЭДС эквивалентно-го генератора найти методом наложения). Сравнить полученное значение тока со значением, найденным по законам Кирхгофа.

Методические указания

Рассмотрим последовательность выполнения задания на примере варианта 30 -13 -1 -3.

Исходная схема, соответствующая указанному варианту, приведена на рис. 2.1.

Комплексные сопротивления элементов имеют значения $Z_1 = i10 \text{ Om}, Z_2 = -i30 \text{ Om}, Z_3 = 40 \text{ Om}, Z_4 = 50 \text{ Om}, Z_5 = 60 \text{ Om},$ комплексы действующих значений ЭДС $E_1 = 100\text{ B}$, $E_2 = 127e^{j25^{\circ}}\text{ B}$.

1. Расчет цепи по законам Кирхгофа в комплексной форме.

Выбираем направления токов в ветвях и направления обхода контуров. Цепь содержит пять ветвей и три узла. Составляем систему уравнений для комплексов действующих значений токов и напряжений:

$$\begin{array}{c}
\begin{matrix}
\mathbf{k} - \mathbf{k}_{3} - \mathbf{k}_{3} = 0, \\
\mathbf{k}_{3} - \mathbf{k}_{4} - \mathbf{k}_{5} = 0, \\
Z_{1} \mathbf{k}_{1} + Z_{2} \mathbf{k}_{2} = \mathbf{k}_{1}, \\
-Z_{2} \mathbf{k}_{2} + Z_{3} \mathbf{k}_{3} + Z_{4} \mathbf{k}_{4} = \mathbf{k}_{2}, \\
-Z_{4} \mathbf{k}_{4} + Z_{5} \mathbf{k}_{5} = 0.
\end{array}$$
(2.1)

Подставляем параметры элементов и записываем систему урав-

нений (2.1) в матричной форме $[A] \times [I] = [F]$, где квадратная матрица [A] – обобщенная матрица коэффициентов, [I] – векторстолбец токов ветвей, [F] – вектор-столбец правой части (вектор входных воздействий).

$$\begin{bmatrix} 1 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ j10 & -j30 & 0 & 0 & 0 \\ 0 & j30 & 40 & 50 & 0 \\ 0 & 0 & 0 & -50 & 60 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{k}_1 \\ \mathbf{k}_2 \\ \mathbf{k}_3 \\ \mathbf{k}_4 \\ \mathbf{k}_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 100 \\ 115 + j53,7 \\ 0 \end{bmatrix}.$$
(2.2)

Решаем систему уравнений (2.2) с помощью любой прикладной математической программы и находим комплексы действующих значений токов в ветвях цепи:

$$I = \begin{pmatrix} 5,885+4,885i \\ 1,962+4,962i \\ 3,924-0,077i \\ 2,14-0,042i \\ 1,783-0,035i \end{pmatrix}.$$

Комплексные значения напряжений на элементах цепи определяем, используя закон Ома в комплексной форме.

2. Расчет цепи методом контурных токов.

Выбираем направления контурных токов совпадающими с обходом контуров на схеме рис 2.1. Запишем систему уравнений для трехконтурной цепи в общем виде:

$$Z_{11} \stackrel{\mathbf{k}_{1}}{\mathbf{k}_{1}} + Z_{12} \stackrel{\mathbf{k}_{2}}{\mathbf{k}_{2}} + Z_{13} \cdot \stackrel{\mathbf{k}_{3}}{\mathbf{k}_{3}} = \stackrel{\mathbf{k}_{3}}{\mathbf{k}_{1}},$$

$$Z_{21} \stackrel{\mathbf{k}_{1}}{\mathbf{k}_{1}} + Z_{22} \stackrel{\mathbf{k}_{2}}{\mathbf{k}_{2}} + Z_{23} \stackrel{\mathbf{k}_{3}}{\mathbf{k}_{3}} = \stackrel{\mathbf{k}_{3}}{\mathbf{k}_{2}},$$

$$Z_{31} \stackrel{\mathbf{k}_{1}}{\mathbf{k}_{1}} + Z_{32} \stackrel{\mathbf{k}_{2}}{\mathbf{k}_{2}} + Z_{33} \stackrel{\mathbf{k}_{3}}{\mathbf{k}_{3}} = \stackrel{\mathbf{k}_{3}}{\mathbf{k}_{3}}.$$
(2.3)

Для рассчитываемой цепи $Z_{11} = Z_1 + Z_2 = j10 - j30 = -j20$ Ом, $Z_{12} = Z_{21} = -Z_2 = j30$ Ом, $Z_{13} = Z_{31} = 0$, $Z_{22} = Z_2 + Z_3 + Z_4 = -j30 + 40 + 50 = 90 - j30$ Ом, $Z_{23} = Z_{32} = -Z_4 = -50$ Ом, $Z_{33} = Z_4 + z_5 = 50 + 60 = 110$ Ом,

 $\mathbf{E}_{k1} = \mathbf{E}_{1} = 100 \,\mathrm{B}, \ \mathbf{E}_{k2} = \mathbf{E}_{2} = 127 e^{j25^{\circ}} = 115, 1 + j53, 7 \,\mathrm{B}, \ \mathbf{E}_{k3} = 0.$

Система уравнений (2.3) после подстановки числовых значений принимает вид

$$\begin{bmatrix} -j20 & j30 & 0 \\ j30 & 90 - j30 & -50 \\ 0 & -50 & 110 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{k}_{K_1} \\ \mathbf{k}_{K_2} \\ \mathbf{k}_{K_3} \end{bmatrix} = \begin{bmatrix} 100 \\ 115 + j53,7 \\ 0 \end{bmatrix}.$$
 (2.4)

Матричное уравнение (2.4) решаем с помощью прикладной математической программы относительно комплексов контурных токов:

$$I = \begin{pmatrix} 5,885+4,885i \\ 3,924-0,077i \\ 1,783-0,035i \end{pmatrix}.$$

На основании комплексов контурных токов вычисляем токи во всех ветвях: $\mathbf{k}_1 = \mathbf{k}_{k_1} = 5,885 + j4,885$ А, $\mathbf{k}_2 = \mathbf{k}_{k_1} - \mathbf{k}_{k_2} = 1,96 + j4,96$ А $\mathbf{k}_3 = \mathbf{k}_{k_2} = 3,927 - j0,077$ А, $\mathbf{k}_4 = \mathbf{k}_{k_2} - \mathbf{k}_{k_3} = 2,14 - j0,042$ А, $\mathbf{k}_5 = \mathbf{k}_{k_3} = 1,783 - -j0,035$ А.

Комплексные значения напряжений на элементах цепи определяем по закону Ома в комплексной форме.

Сравниваем результаты, полученные в пп. 1 и 2.

3. Расчет цепи методом узловых потенциалов.

Схема на рис. 2.1 имеет три узла. Принимая потенциал узла *3* равным нулю: **4**₃=0, записываем исходную систему уравнений:

$$\begin{array}{c} Y_{11} \mathbf{a}_{1} - Y_{12} \mathbf{a}_{2} = \mathbf{A}_{11}, \\ -Y_{21} \mathbf{a}_{1} + Y_{22} \mathbf{a}_{2} = \mathbf{A}_{22}. \end{array}$$
(2.5)

Узловые проводимости рассчитываемой цепи:

$$Y_{11} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} = \frac{1}{j10} + \frac{1}{-j30} + \frac{1}{40} = 0,0250 - j0,0667 =$$

=7,12·10⁻² e^{-j69,5°} CM,
$$Y_{12} = Y_{21} = \frac{1}{Z_3} = \frac{1}{40} = 2,50\cdot10^{-2}$$
 CM,
$$Y_{22} = \frac{1}{Z_3} + \frac{1}{Z_4} + \frac{1}{Z_5} = \frac{1}{40} + \frac{1}{50} + \frac{1}{60} = 6,17\cdot10^{-2}$$
 CM;

задающие узловые токи:

$$\mathbf{\hat{k}}_{11} = \frac{\mathbf{\hat{k}}_{1}}{Z_{1}} - \frac{\mathbf{\hat{k}}_{2}}{Z_{3}} = \frac{100}{j10} - \frac{127e^{j25^{\mathbf{0}}}}{40} = 11,7e^{-j104^{\mathbf{0}}} \text{A},$$
$$\mathbf{\hat{k}}_{22} = \frac{\mathbf{\hat{k}}_{2}}{Z_{3}} = \frac{127e^{j25^{\mathbf{0}}}}{40} = 3,175e^{j25^{\mathbf{0}}} \text{A}.$$

После подстановки числовых значений система (2.5) принимает вид

$$7,12e^{-j69,5^{\mathbf{0}}}\cdot \mathbf{a}_{1}-2,50\cdot \mathbf{a}_{2}=11,7\cdot 10^{2} e^{-j104^{0}},$$
$$-2,50\cdot \mathbf{a}_{1}+6,17\cdot \mathbf{a}_{2}=3,175\cdot 10^{2} e^{j25^{0^{\mathbf{0}}}}.$$

Решаем ее с помощью определителей. Определитель системы и алгебраические дополнения равны:

$$\Delta = \det \begin{vmatrix} Y_{11} & -Y_{12} \\ -Y_{21} & Y_{22} \end{vmatrix} = \det \begin{vmatrix} 7,12e^{-j69,5^{o}} & -2,50 \\ -2,50 & 6,17 \end{vmatrix} = 42, 1e^{-j77,4^{o}},$$

$$\Delta_{11} = (-1)^{(1+1)} \cdot Y_{22} = 6,17 \qquad \Delta_{12} = \Delta_{21} = (-1)^{(1+2)} \cdot (-Y_{12}) = 2,50,$$

$$\Delta_{22} = (-1)^{(2+2)} \cdot Y_{11} = 7, 12e^{-j69,5^{o}}.$$

Искомые потенциалы определяем по формулам

$$\begin{aligned} &\mathbf{\$}_{1} = \frac{\Delta_{11}}{\Delta} \,\mathbf{\$}_{11}^{*} + \frac{\Delta_{12}}{\Delta} \,\mathbf{\$}_{22}^{*} = \frac{6.17}{42.1e^{-j77.4^{o}}} \cdot 1170 \cdot e^{-j104^{o}} + \\ &+ \frac{2.5}{42.1e^{-j77.4^{o}}} \cdot 317.5 \cdot e^{j25^{o}} = 160e^{-j21.3^{o}} = 149 - j58.1 \,\mathrm{B}, \\ &\mathbf{\$}_{2} = \frac{\Delta_{21}}{\Delta} \,\mathbf{\$}_{11}^{*} + \frac{\Delta_{22}}{\Delta} \,\mathbf{\$}_{22}^{*} = \frac{2.5}{42.1e^{-j77.4^{o}}} \cdot 1170 \cdot e^{-j104^{o}} + \\ &+ \frac{7.12e^{-j69.5^{o}}}{42.1e^{-j77.4^{o}}} \cdot 317.5 \cdot e^{j25^{o}} = 107e^{-j1.07^{o}} = 107 - j2.00 \,\mathrm{B}. \end{aligned}$$

Находим комплексы напряжений на элементах цепи: $U_1^{\bullet} = L_1^{\bullet} - (\Phi_1 - \Phi_3) = 100 - 149 + j58, 1 = -49, 0 + j58, 1 = -76, 0e^{j130^{\circ}}$ В,

$$\begin{split} & \mathcal{U}_{2}^{\bullet} = \mathbf{\pounds}_{1}^{\bullet} - \mathbf{\pounds}_{3}^{\bullet} = 149 - j58, 1 = 160e^{-j21,3^{o}} \text{ B}, \\ & \mathcal{U}_{3}^{\bullet} = \mathbf{\pounds}_{2}^{\bullet} - (\mathbf{\pounds}_{2}^{\bullet} - \mathbf{\pounds}_{1}^{\bullet}) = 115 + j53, 7 - (107 - j2,00 - 149 + j58, 1) = \\ & = 157 - j2, 40 = 157e^{-j0,875^{o}} \text{ B}, \end{split}$$

$$\mathbf{A}_{1} = \frac{U_{1}^{\mathbf{a}}}{Z_{1}} = \frac{76.0e^{j130^{\circ}}}{10e^{j90^{\circ}}} = 7,60e^{j40,1^{\mathbf{0}}} = 5,81 + j4,90 \text{ A},$$

$$\mathbf{k}_{2} = \frac{U_{2}}{Z_{2}} = \frac{160e^{-j21.3^{\circ}}}{30e^{-j90^{\circ}}} = 5,33e^{j68,7^{\circ}} = 1,94 + j4,97 \text{ A},$$

$$\mathbf{k}_{3} = \frac{U_{3}}{Z_{3}} = \frac{157 - j2,40}{40} = 3,93 - j0,060 = 3,93e^{-j0.875^{\circ}} \text{ A},$$

$$\mathbf{k}_{4} = \frac{U_{4}}{Z_{4}} = \frac{107 - j2,00}{50} = 2,14 - j0,040 = 2,14e^{-j1.07^{\circ}} \text{ A},$$

$$\mathbf{k}_{4} = \frac{U_{4}}{Z_{4}} = \frac{107 - j2,00}{50} = 2,14 - j0,040 = 2,14e^{-j1.07^{\circ}} \text{ A},$$

$$\mathbf{A}_{5} = \frac{C_{5}}{Z_{5}} = \frac{107 - j2,00}{60} = 1,78 - j0,033 = 1,78e^{-j1,06^{\circ}} \text{ A.}$$

Результаты вычислений оформляем в виде таблицы.

Dagu	ATUOA	Комплексн	ные значения	
вели	стная чина	Алгебраиче-	Показательная	Мгновенные значения
		ская форма	форма	
Ř	А	5,81+ <i>j</i> 4,90	7,6 <i>e ^{j40,1}</i>	$i_1(t)=10,7\sin(\omega t+40,1^0)$
k z	А	1,78- <i>j</i> 0,033	1,78 <i>e^{-j1,06}</i>	$i_5(t)=2,52\sin(\omega t-1,06^{0})$
₽	В	-49,0+ <i>j</i> 58,1	76,0 <i>e ^{j130°}</i>	$u_1(t)=107\sin(\omega t+130^{0})$
U ⁸ 5	В	107– <i>j</i> 2,00	$107e^{-j1,06^{0}}$	$u_5(t)=151\sin(\omega t-1,06^{0})$

Результаты, полученные методом узловых потенциалов, сравниваем с результатами, полученными в пп.1.1 и 1.2.

2. Построение векторной диаграммы токов и напряжений.

Для построения векторной диаграммы (рис 2.2) используем алгебраическую форму представления комплексов действующих значений токов и напряжений.

Диаграмму выполняем на миллиметровке в масштабах, соответствующих ГОСТ: 0,2; 0,5; I; 2; 5; 10; 20 ... (А/см, В/см). Диаграммы токов и напряжений выделяем разными цветами.

Векторные диаграммы токов и напряжений должны удовлетворять уравнениям (2.1), составленным по законам Кирхгофа.

3. Проверка баланса мощностей.

Комплекс полной мощности, вырабатываемой источниками це-

пи,
$$S_{-\text{ист}} = \sum_{q=1}^{q=2} E_q I_q^*$$
.

Подставляя числовые значения, полученные методом узловых потенциалов, имеем

$$\begin{split} S_{-\text{ucr}} &= \sum_{q=1}^{2} \mathcal{B}_{q}^{2} I_{q}^{*} = \mathcal{B}_{1}^{*} I_{1}^{*} + \mathcal{B}_{2}^{*} I_{3}^{*} = 100 \cdot (5,81 - j4,90) + \\ &+ 127e^{j25^{\bullet}} \cdot 3,93e^{j0,875^{\bullet}} = 1030 - j271 \text{ BA.} \\ P_{\text{ucr}} &= \text{Re}(S_{-\text{ucr}}) = 1030 \text{ BT}, \quad \mathcal{Q}_{\text{ucr}} = \text{Im}(S_{-\text{ucr}}) = -271 \text{ BAp.} \\ \text{Комплекс полной мощности, потребляемой приемниками цепи:} \\ S_{-\text{пр}} &= \sum_{k=1}^{k=5} Z_{k} I_{k}^{2} = Z_{1} I_{1}^{2} + Z_{2} I_{2}^{2} + Z_{3} I_{3}^{2} + Z_{4} I_{4}^{2} + Z_{5} I_{5}^{2} = \\ j10 \cdot 7,68^{2} - j30 \cdot 5,33^{2} + 40 \cdot 3,93^{2} + 50 \cdot 2,14^{2} + 60 \cdot 1,78^{2} = 1040 - j275 \text{ BA}, \\ P_{\text{пр}} &= 1040 \text{ BT}, \quad \mathcal{Q}_{\text{пр}} = -275 \text{ BAp.} \end{split}$$

Проводим оценку баланса:

=

$$\delta P = \frac{\left| P_{\text{HCT}} - P_{\text{пр}} \right|}{P_{\text{HCT}}} 100\% = \frac{1040 - 1030}{1030} 100\% = 0.9\%;$$

$$\delta Q = \frac{\left|Q_{\text{HCT}} - Q_{\text{пр}}\right|}{Q_{\text{HCT}}} 100\% = \frac{275 - 271}{271} 100\% = 1,5\%$$

Баланс активных и реактивных мощностей в цепи соблюдается. Полученные расхождения находятся в пределах допустимой по-грешности.

4. Определение показаний приборов.

Амперметр показывает действующее значение измеряемого тока I_2 : $I_A = 5,3$ A; вольтметр – действующее значение измеряемого напряжения U_4 : $U_V = 106$ B.

Показание ваттметра определяется произведением действующих значений напряжения и тока на соответствующих обмотках прибора на косинус угла сдвига фаз между ними:

$$P_W = U_2 \cdot I_3 \cdot \cos(U_2, I_3) = 160 \cdot 3,93 \cdot \cos 19,5^\circ = 588 \,\mathrm{Br}$$
.

5. Определение тока P_5 методом эквивалентного генератора.

Метод позволяет определить ток в одной из ветвей электрической цепи при замене остальной части цепи эквивалентным активным двухполюсником, называемым эквивалентным генератором (см. рис.1.4). В процессе расчета определяем ЭДС эквивалентного генератора: $\mathcal{B}_{\text{эг}} = \mathcal{B}_{xx}$, где \mathcal{B}_{xx} – напряжение на зажимах разомкнутой ветви *ab* (в рассматриваемом случае Z_5), и внутреннее сопротивление эквивалентного генератора $Z_{\text{эг}}$, равное эквивалентному сопротивлению цепи по отношению к зажимам *ab*. Ток в ветви рассчитывают по формуле

$$\mathbf{P} = \mathbf{E}_{\mathrm{SF}} / (Z_{\mathrm{SF}} + Z_5) \, .$$

5.1. Определение ЭДС эквивалентного генератора.

ЭДС эквивалентного генератора $\mathbf{k}_{3r}^{e} = \mathbf{k}_{xx}^{e}$ находим методом наложения. Для рассматриваемой цепи $\mathbf{k}_{xx}^{e} = Z_4 \mathbf{k}_4^{e}$, где \mathbf{k}_4^{e} – комплекс тока, протекающего по сопротивлению Z_4 , при разомкнутой ветви с сопротивлением Z_5 .

Определяем $P_{4(1)}^{a}$ – частичный ток при действии одного источника P_{4}^{a} (рис.2.3, *a*) методом эквивалентных преобразований:

$$Z_{\mathcal{H}(1)} = Z_1 + \frac{Z_2(Z_3 + Z_4)}{Z_2 + Z_3 + Z_4} = j10 + \frac{30e^{-j90^{\bullet}} \cdot 90}{90 - j30} = j10 + 28,5e^{-71,6^{\bullet}} = j10 + 28,5e^{-71,6^{\bullet}$$

$$=9,00 - j17,0 = 19,2e^{-j62,1^{0}} \text{ OM };$$

$$\mathbf{P}_{1(1)} = \frac{\mathbf{P}_{1}}{Z_{3(1)}} = \frac{100}{19,2e^{-j62,1^{0}}} = 5,21e^{j62,1^{0}} \text{ A };$$

$$\mathbf{P}_{2(1)} = \mathbf{P}_{1(1)} \cdot \frac{Z_{2}(Z_{3} + Z_{4})}{Z_{2} + Z_{3} + Z_{4}} = 5,21e^{j62,1^{0}} \cdot 28,5e^{-j71,6^{0}} = 148e^{-j9,50^{0}} \text{ B };$$

$$\mathbf{P}_{4(1)} = \frac{\mathbf{P}_{2(1)}}{Z_{3} + Z_{4}} = \frac{148e^{-j9,5^{0}}}{90} = 1,64e^{-j9,5^{0}} = 1,62 - j0,271 \text{ A }.$$
Onpedensem $\mathbf{P}_{4(2)}$ – частичный ток от действия одного источни-
ка \mathbf{P}_{2} (рис.2.3, б) методом эквивалентных преобразований:

$$Z_{3(2)} = Z_{3} + Z_{4} + \frac{Z_{1}Z_{2}}{Z_{1} + Z_{2}} = 90 + \frac{10e^{j90^{0}} \cdot 30e^{-j90^{0}}}{20e^{-j90^{0}}} = 90 + j15,0 = 91,2e^{j9,46^{0}} \text{ OM },$$

$$\mathbf{P}_{4(2)} = \frac{\mathbf{P}_{2}}{Z_{3(2)}} = \frac{127e^{j25^{0}}}{91,2e^{j9,46^{0}}} = 1,39e^{j15,5^{0}} = 1,34 + j0,371 \text{ A }.$$

Находим ток R_4 при одновременном действии двух источников в соответствии с принципом наложения:

$$\mathbf{P}_{4}^{\mathbf{k}} = \mathbf{P}_{4(1)}^{\mathbf{k}} + \mathbf{P}_{4(2)}^{\mathbf{k}} = 1,62 - j0,271 + 1,34 + j0,371 = 2,96 + j0,100 = 2,96e^{j1,93^{\mathbf{0}}}$$
 A

В данном случае токи суммируются, так как направления частичных токов $R_{4(1)}$ и $R_{4(2)}$ совпадают.

ЭДС эквивалентного генератора

$$E_{3\Gamma} = Z_4 E_4 = 50 \cdot 2,96e^{j1,93^{\circ}} = 148e^{j1,93^{\circ}}$$
 A.

5.2. Определение внутреннего сопротивления эквивалентного генератора.

Определяем сопротивление эквивалентного генератора как эквивалентное сопротивление цепи по отношению к зажимам сопротивления Z_5 (рис.2.3, *в*):

$$Z_{\Im\Gamma} = \frac{Z_4(Z_3 + \frac{Z_1Z_2}{Z_1 + Z_2})}{Z_4 + Z_3 + \frac{Z_1Z_2}{Z_1 + Z_2}} = \frac{50(40 + j15)}{90 + j15} = \frac{50 \cdot 42.7e^{j20.6^{\circ}}}{91.2e^{j9.46^{\circ}}} =$$
$$= 23.4e^{j11.1^{\circ}} = 23.0 + j4.50 \text{ Om}$$

Искомый ток

$$\mathbf{P}_{5} = \frac{\mathbf{P}_{9\Gamma}}{Z_{9\Gamma} + Z_{5}} = \frac{148e^{j1,93^{\mathbf{0}}}}{83,0 + j4,50} = \frac{148e^{j1,93^{\mathbf{0}}}}{83,1e^{j3,10^{\mathbf{0}}}} = 1,78e^{-j1,17^{\mathbf{0}}} \text{ A}.$$

Рассчитанное значение тока практически совпадает со значениями, полученными другими методами (пп.1,2).

В заключении следует провести сравнительных анализ использованных в работе методов расчета.

Задание 3 РАСЧЁТ ЦЕПИ ПОСТОЯННОГО ТОКА РАЗЛИЧНЫМИ МЕТОДАМИ

Постановка задачи

В разветвленной электрической цепи постоянного тока (рис. 3.1) действуют два источника ЭДС из шести. Остальные ЭДС отсутствуют, т.е. закорочены.

Величина и направление ЭДС источников, а также величины сопротивлений для каждого варианта приведены в табл.3.1.

								Таб	лица 3.1
			R_1	R_2	R_3	R_4	R_5	R_6	1 группа
LHR			R_6	R_5	R_4	R_3	R_2	R_1	2 группа
ЗИС	ЭДС	С, В	R_1	R_3	R_5	R_2	R_4	R_6	3 группа
3aj			R_2	R_1	R_4	R_3	R_6	R_5	4 группа
					C	M			
1	$E_1 = 100$	$E_2 = 20$	10	20	30	40	50	60	
2	$E_1 = 80$	$E_{3} = 20$	20	30	40	50	60	10	
3	$E_1 = 80$	$E_4 = 20$	30	40	50	60	10	20	
4	$E_1 = 80$	$E_5 = 20$	40	50	60	10	20	30	
5	$E_1 = 80$	$E_6 = 20$	50	60	10	20	30	40	
6	$E_2 = 80$	$E_3 = 20$	60	10	20	30	40	50	
7	$E_2 = 80$	$E_4 = 20$	10	30	40	50	60	20	
8	$E_2 = 80$	$E_5 = 20$	10	40	50	60	20	30	
9	$E_2 = 80$	$E_6 = 20$	10	50	60	20	30	40	
10	$E_3 = 80$	$E_4 = 20$	10	60	20	30	50	50	
11	$E_3 = 80$	$E_5 = 20$	20	40	30	10	60	60	
12	$E_3 = 80$	$E_6 = 20$	20	50	30	40	10	60	
13	$E_4 = 80$	$E_5 = 20$	20	60	30	50	40	10	
14	$E_4 = 80$	$E_6 = 20$	20	30	50	60	10	40	
15	$E_5 = 80$	$E_6 = 20$	10	20	30	40	60	50	
16	$E_1 = 100$	$E_2 = 20$	10	20	30	40	50	60	
17	$E_1 = 80$	$E_3 = 20$	20	30	40	50	60	10	
18	$E_1 = 80$	$E_4 = 20$	30	40	50	60	10	20	
19	$E_1 = 80$	$E_5 = 20$	40	50	60	10	20	30	
20	$E_1 = 80$	$E_{6} = 20$	50	60	10	20	30	40	
21	$E_2 = 80$	$E_3 = 20$	60	10	20	30	40	50	
22	$E_2 = 80$	$E_4 = 20$	10	30	40	50	60	20	
23	$E_2 = 80$	$E_5 = 20$	10	40	50	60	20	30	

Окончание табл. 3.1

1	2	3	4	5	6	7	8	9
24	$E_2 = 80$	$E_6 = 20$	10	50	60	20	30	40
25	$E_3 = 80$	$E_4 = 20$	10	60	20	30	50	50
26	$E_3 = 80$	$E_5 = 20$	20	40	30	10	60	60
27	$E_3 = 80$	$E_6 = 20$	20	50	30	40	10	60
28	$E_4 = 80$	$E_5 = 20$	20	60	30	50	40	10
29	$E_4 = 80$	$E_6 = 20$	20	30	50	60	10	40
30	$E_5 = 80$	$E_6 = 20$	10	20	30	40	60	50

Содержание задания

1. Составить на основании законов Кирхгофа систему уравнений для расчета токов в ветвях цепи. Решить ее на ЭВМ с помощью прикладной математической программы (MatLab, MatCAD и др.).

2. Рассчитать токи в ветвях методом контурных токов с применением прикладных программ.

3. Рассчитать токи в ветвях методом узловых потенциалов.

4. Найти ток в резисторе R_k методом эквивалентного генератора ($k = 1 \div 6$ задается преподавателем).

ЭДС эквивалентного генератора $E_{\rm эr}$ определить, используя метод наложения, а внутреннее сопротивление эквивалентного генератора $R_{\rm эr}$ – используя преобразование соединения «треугольник» в «звезду» или обратное.

5. Построить кривую мощности $P_k = f(R_k)$ и напряжения $U_k = = f(R_k)$ при изменении R_k в пределах $R_k = (0 \div 3)R_{\text{эт}}$.

6. Определить показание вольтметра ($R_v = \infty$), включенного между точкой *а* и узлом, потенциал которого равен нулю (методом узловых потенциалов).

7. Проверить баланс мощностей в цепи.

Методические указания

1. Расчет цепи по законам Кирхгофа.

Для составления уравнений по законам Кирхгофа необходимо выбрать положительные направления токов в ветвях и направления обхода контуров.

Цепь имеет шесть ветвей и четыре узла, поэтому должно быть составлено три уравнения по первому закону и три – по второму закону Кирхгофа.

Рассмотрим цепь, изображенную на рис. 3.2. Параметры цепи: $R_1 = 10$ Ом, $R_2 = 20$ Ом, $R_3 = 30$ Ом, $R_4 = 40$ Ом, $R_5 = 50$ Ом, $R_6 = 60$ Ом, $E_1 = 10$ В, $E_5 = 50$ В.

Рис. 3.2

Для данной схемы составим систему уравнений по законам Кирхгофа и представим ее в матричном виде:

1	-1	1	0	0	0	I_1		0	
-1	0	0	-1	0	1	I_2		0	
0	0	-1	1	1	0	I_3		0	
R_1	0	$-R_3$	$-R_4$	0	0	I_4	=	E_1	•
0	R_2	R_3	0	R_5	0	I_5		$-E_5$	
0	0	0	R_4	$-R_5$	R_6	I_6		E_5	

После подстановки значений параметров элементов получим матричное уравнение:

1	-1	1	0	0	0	$\begin{bmatrix} I_1 \end{bmatrix}$		[0]	
-1	0	0	-1	0	1	I_2		0	
0	0	-1	1	1	0	I_3		0	
10	0	- 30	-40	0	0	I_4	=	10	
0	20	30	0	50	0	I_5		-50	
0	0	0	40	-50	60	I_6		50	

или в кратком виде $[A] \times [I] = [F]$, где A является матрицей коэффициентов, I – вектор-столбец токов, F – вектор-столбец воздействий. Решая полученное матричное уравнение с применением прикладных программ (например, MathCAD), находим значения токов:

I = (0,128 - 0,333 - 0,462 0,128 - 0,59 0,256).

2. Расчет цепи методом контурных токов.

При расчете цепи методом контурных токов необходимо составить систему уравнений и определить значения контурных сопротивлений R_{11} , $R_{12}=R_{21}$, $R_{13}=R_{31}$, R_{22} , $R_{23}=R_{21}$, R_{32} , R_{33} и контурных ЭДС.

Запишем систему уравнений:

$$\begin{split} R_{11}I_{\kappa 1} - R_{12}I_{\kappa 2} - R_{13}I_{\kappa 3} &= E_{\kappa 1}, \\ - R_{21}I_{\kappa 1} + R_{12}I_{\kappa 2} - R_{13}I_{\kappa 3} &= E_{\kappa 2}, \\ - R_{31}I_{\kappa 1} - R_{32}I_{\kappa 2} + R_{33}I_{\kappa 3} &= E_{\kappa 3}, \end{split}$$

или в матричном виде с учетом контурных сопротивлений и ЭДС:

$$\begin{bmatrix} R_1 + R_3 + R_4 & -R_3 & -R_4 \\ -R_3 & R_3 + R_2 + R_5 & -R_5 \\ -R_4 & -R_5 & R_4 + R_5 + R_6 \end{bmatrix} \times \begin{bmatrix} I_{\kappa 1} \\ I_{\kappa 2} \\ I_{\kappa 3} \end{bmatrix} = \begin{bmatrix} E_1 \\ -E_5 \\ E_5 \end{bmatrix}.$$

После подстановки значений параметров получим

$$\begin{bmatrix} 80 & -30 & -40 \\ -30 & 100 & -50 \\ -40 & -50 & 150 \end{bmatrix} \times \begin{bmatrix} I_{\kappa 1} \\ I_{\kappa 2} \\ I_{r 3} \end{bmatrix} = \begin{bmatrix} 10 \\ -50 \\ 50 \end{bmatrix}.$$

Решая матричное уравнение, находим контурные токи:

$$I_{\kappa} = \begin{pmatrix} 0,128 \\ -0,333 \\ 0,256 \end{pmatrix}.$$

Используя контурные токи, вычисляем токи в ветвях:

 $I_1 = I_{\kappa 1} = 0,128 \text{ A}, I_2 = I_{\kappa 2} = -0,333 \text{ A}, I_3 = I_{\kappa 2} - I_{\kappa 1} = -0,461 \text{ A},$ $I_4 = I_{\kappa 3} - I_{\kappa 1} = 0,128 \text{ A}, I_5 = I_{\kappa 2} - I_{\kappa 3} = -0,589 \text{ A}, I_6 = I_{\kappa 3} = 0,256 \text{ A}.$

3. Расчет цепи методом узловых потенциалов.

Потенциал одного из узлов принимаем равным нулю ($\phi_4 = 0$, см. рис.3.1). Исходная система уравнений, составленная методом узловых потенциалов:

$$\begin{split} \phi_1 G_{11} - \phi_2 G_{12} - \phi_3 G_{13} &= I_{11}, \\ - \phi_1 G_{21} + \phi_2 G_{22} - \phi_{23} G_{23} &= I_{22}, \\ - \phi_1 G_{31} - \phi_2 G_{32} + \phi_3 G_{33} &= I_{33}. \end{split}$$

Соответствующие узловые потенциалы и узловые токи равны:

$$G_{11} = \frac{1}{R_1} + \frac{1}{R_4} + \frac{1}{R_6} = 0,1417 \,\text{Cm}, \qquad G_{22} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = 0,1833 \,\text{Cm},$$

$$G_{33} = \frac{1}{R_2} + \frac{1}{R_5} + \frac{1}{R_6} = 0,0867 \ G_{12} = G_{21} = \frac{1}{R_1} = 0,1 \ \text{Cm},$$

$$G_{13} = G_{31} = \frac{1}{R_6} = 0,0167 \ \text{Cm}, \ G_{23} = G_{32} = \frac{1}{R_2} = 0,05 \ \text{Cm};$$

$$I_{11} = -\frac{E_1}{R_1} = -1 \ \text{A}, \ I_{22} = \frac{E_1}{R_1} = 1 \ \text{A}, \ I_{33} = \frac{E_5}{R_5} = 1 \ \text{A}.$$

С учетом полученных численных значений запишем систему уравнений в матричном виде:

0,1417	-0,1	-0,0167		$\left[\phi_{1} \right]$		[-1]	
-0,1	0,1833	-0,05	X	φ ₂	=	1	
-0,0167	-0,05	0,0867		φ3_		1	

Решая матричное уравнение, находим узловые потенциалы: $\phi = (5,137 \quad 13,853 \quad 20,513)$.

Токи в ветвях определяем по закону Ома:

$$I_{1} = \frac{E_{1} + \phi_{1} - \phi_{2}}{R_{1}} = 0,128\text{A}, I_{2} = \frac{\phi_{2} - \phi_{3}}{R_{2}} = -0,333\text{A},$$

$$I_{3} = \frac{-\phi_{2}}{R_{3}} = -0,462\text{A}, I_{4} = \frac{\phi_{1}}{R_{4}} = 0,128\text{A},$$

$$I_{5} = \frac{\phi_{3} - E_{5}}{R_{5}} = -0,589\text{A}, I_{6} = \frac{\phi_{3} - \phi_{1}}{R_{6}} = 0,256\text{A}.$$

4. Определение тока методом эквивалентного генератора.

Пусть требуется определить ток в резисторе R_6 . Расчетная схема приведена на рис. 3.3.

Рис. 3.3

Согласно методу, вся внешняя по отношению к резистору R_6 цепь заменяется эквивалентным генератором с внутренним сопротивлением Z_{3r} и ЭДС E_{3r} .

Внутреннее сопротивление определяется как эквивалентное сопротивление внешней цепи по отношению к зажимам ab резистора R_6 (источники ЭДС при этом закорачиваются).

Преобразуем соединение «звезда» R_3 - R_5 - R_4 в эквивалентный «треугольник» (рис. 3.4):

$$\begin{split} R_{43} &= R_4 + R_3 + R_4 R_3 / R_5 = 94 \text{ Om}, \\ R_{35} &= R_3 + R_5 + R_3 R_5 / R_4 = 117,5 \text{ Om}, \\ R_{54} &= R_5 + R_4 + R_5 R_4 / R_3 = 156,67 \text{ Om}. \end{split}$$

Тогда сопротивление эквивалентного генератора

$$R_{3\Gamma} = R_{54} \cdot \left(\frac{R_1 R_{43}}{R_1 + R_{43}} + \frac{R_2 R_{35}}{R_2 + R_{35}}\right) / \left(R_{54} + \frac{R_1 R_{43}}{R_1 + R_{43}} + \frac{R_2 R_{35}}{R_2 + R_{35}}\right) = 22,4 \,\mathrm{Om}.$$

ЭДС эквивалентного генератора определяется как напряжение на зажимах генератора в режиме холостого хода: $E_{\rm 3F} = U_{ab_{\rm xx}} = E_5 - I_{4_{\rm xx}} R_4 - I_{5_{\rm xx}} R_5$.

Токи холостого хода следует определять методом наложения, т. е. как алгебраическую сумму составляющих, каждая из которых обусловлена действием только одного источника энергии. Схемы для рассматриваемого варианта приведены на рис. 3.5.

$$I_{4xx}^{(1)} = \frac{E_1}{R_1 + R_4 + R_3(R_2 + R_5)/(R_3 + R_2 + R_5)} = 0.141 \text{ A}$$

$$I_{5xx}^{(1)} = I_{4xx}^{(1)} \cdot \frac{R_3}{R_2 + R_3 + R_5} = 0,0423 \text{ A.}$$

$$I_{5xx}^{(5)} = \frac{E_5}{R_2 + R_5 + R_3(R_1 + R_4)/(R_3 + R_1 + R_4)} = 0,563 \text{ A,}$$

$$I_{4xx}^{(5)} = I_{5xx}^{(5)} \cdot \frac{R_3}{R_1 + R_3 + R_4} = 0,211 \text{ A.}$$

$$R_1 \longrightarrow R_3 \qquad R_1 \longrightarrow R_3 \qquad R_5 \qquad$$

Искомые токи холостого хода: $I_{4xx} = -I_{4xx}^{(1)} + I_{4xx}^{(5)} = 0,07$ A, $I_{5xx} = -I_{5xx}^{(1)} + I_{5xx}^{(5)} = 0,521$ A.

Рис. 3.5

Находим ЭДС. эквивалентного генератора и ток в резисторе R_6 : $E_{2\Gamma} = 21,15$ В, $I_6 = E_{2\Gamma} / (R_{2\Gamma} + R_6) = 0,256$ А.

Полученный результат совпадает с найденными в пп.1, 2 и 3.

5. Построение графиков мощности $P_{\kappa} = f(R_{\kappa})$ и напряжения $U_{\kappa} = f(R_{\kappa})$.

Построение графиков при изменении R_{κ} в пределах $R_{\kappa} = = (0 \div 3)R_{\rm sr}$ выполняется по выражениям

$$P_k = I_k^2 \cdot R_k = \frac{E_{\Im\Gamma}^2 \cdot R_k}{\left(R_{\Im\Gamma} + R_k\right)^2}; \quad U_k = I_k \cdot R_k = \frac{E_{\Im\Gamma} \cdot R_k}{R_{\Im\Gamma} + R_k}.$$

Графики строятся на миллиметровке с соблюдением масшта-бов.

6. Определение показаний вольтметра.

В случае рассматриваемого варианта ($E_6 = 0$) вольтметр покажет напряжение, соответствующее действующему значению потенциала точки 3 (см. рис. 3.1): $U_V = 20,5$ В.

7. Оценка баланса мощностей.

Проверку выполнения баланса мощностей проводим по равенству

$$\sum_{k=1}^{2} E_k \cdot I_k = \sum_{p=1}^{6} I_p^2 \cdot R_p$$

Левая часть равенства представляет собой полную мощность, отдаваемую источниками энергии, правая – суммарную мощность, потребляемую приемниками.

Если направления тока и ЭДС в источнике не совпадают, мощность источника считается отрицательной (источник не отдает, а потребляет энергию). Следует также иметь в виду, что отрицательные значения токов, полученные при расчете цепи, означают, что физически токи направлены в противоположном выбранному на схеме направлении.

Проверим выполнение баланса мощностей для рассчитанной цепи, используя значения токов, полученных в п.1 (значения токов, полученных разными методами, должны быть практически одинаковыми):

$$\begin{split} P_{\text{HCT}} &= E_1 \cdot I_1 + E_5 \cdot I_5 = 10 \cdot 0,128 + 50 \cdot 0,59 = 30,78 \text{ BT}; \\ P_{\text{TID}} &= I_1^2 R_1 + I_2^2 R_2 + I_3^2 R_3 + I_4^2 R_4 + I_5^2 R_5 + I_6^2 R_6 = 0,16 + 2,22 + 6,42 + 0,66 + 17,4 + 3,93 = 30,77 \text{ BT}. \end{split}$$

),66+17,4+3,93 =30,77 Вт. Погрешность проведенных расчетов составила:

$$\frac{\left|P_{\text{HCT}} - P_{\text{Tp}}\right|}{P_{\text{HCT}}} \cdot 100\% = \frac{30,78 - 30,77}{30,78} \cdot 100\% = 0,03\% ,$$

что говорит об их высокой точности.

Задание 4 РАСЧЕТ РЕАКТИВНЫХ ЭЛЕКТРИЧЕСКИХ ФИЛЬТРОВ

Постановка задачи

Генератор E с внутренним сопротивлением Z_i подключен к активной нагрузке $R_{\rm H}$ через согласующий четырехполюсник C и пассивный фильтр Φ (рис.4.1). Генератор вырабатывает периодическую несинусоидальную ЭДС:

$$e(t) = \sum_{n=0}^{\infty} \sqrt{2}E_n \sin(n\omega_1 t + \psi_n), \ \omega_1 = 10^3 \,\mathrm{c}^{-1}$$

Фильтр предназначен для пропускания в нагрузку гармоник не-

синусоидального напряжения в полосе частот от низкой $\omega_{\rm H} = n_{\rm H}\omega_{\rm I}$ до высокой $\omega_{\rm R} = n_{\rm R}\omega_{\rm I}$.

Согласующий четырехполюсник должен обеспечить передачу в нагрузку максимальной мощности на частоте согласования $\omega_c = n_c \omega_1$.

Фильтр и согласующий четырехполюсник состоят из реактивных элементов. Типы фильтров приведены на рис. 4.2.

Рис. 4.2 (окончание)

Вариант рассчитываемого фильтра, границы полосы пропускания, номер гармоники на частоте согласования, а также сопротивление нагрузки $R_{\rm H}$ и параметры элементов внутреннего сопротивления генератора R_i , L_i или C_i указаны в табл. 4.1.

Таблица	4.1

		-					таблица 4.1
№ вари-	Тип фильтра	Полоса про- пускания		<i>R</i> ., Ом	<i>R</i> ., Ом	<i>L</i> ; или <i>C</i> :	Номер гармо- ники частоты
анта	(рис 4.2)	n _H	n _B	n) -	17 -	11	согласования no
1	1	3	6	700	300	0,015 Гн	5
2	2	5	10	300	600	80 мкФ	8
3	3	6	9	1000	500	0,010 Гн	7
4	4	3	10	200	500	60 мкФ	6
5	5	2	4	450	400	30 мкФ	3
6	6	3	8	350	700	0,002 Гн	5
7	7	5	7	250	100	0,005 Гн	6
8	8	4	6	150	200	25 мкФ	5
9	9	0	8	500	150	0,009 Гн	6
10	10	0	10	750	350	100 мкФ	8
11	11	0	6	850	100	75 мкФ	4
12	12	0	9	650	500	0,12 Гн	5
13	13	4	∞	200	600	0,020 Гн	6
14	14	8	∞	300	500	65 мкФ	11
15	15	6	∞	350	100	0,018 Гн	10
16	16	5	∞	150	800	55 мкФ	9
17	1	10	13	250	200	120 мкФ	11
18	2	5	8	200	100	0,008 Гн	6
19	3	2	4	400	500	110 мкФ	3
20	4	3	5	300	150	0,030 Гн	4
21	5	5	12	500	100	0,007 Гн	10
22	6	8	12	100	200	0,020 Гн	9
23	7	4	9	350	700	30 мкФ	5
24	8	6	12	200	100	35 мкФ	8
25	9	0	5	700	100	75 мкФ	4
26	10	0	11	300	300	0,04 Гн	3
27	11	0	7	600	500	0,015 Гн	3
28	12	0	8	900	400	80 мкФ	2
29	13	5	∞	800	100	85 мкФ	10
30	14	6	∞	300	500	0,014 Гн	9
31	15	3	∞	700	300	100 мкФ	5
32	16	10	∞	1000	100	0,010 Гн	15

Содержание задания

1. Определить параметры элементов симметричного реактивного фильтра, нагруженного на повторное сопротивление. На частоте согласования повторное сопротивление принять равным R_н. Для режущих фильтров частота резонанса последовательного или параллельного контура должна располагаться в полосе затухания и совпадать с частотой гармоники в спектре напряжения генератора, ближайшей к границе полосы пропускания.

2. Для рассчитанного фильтра получить и построить графики зависимости модулей передаточной функции по напряжению и повторного сопротивления от частоты.

3. Получить частотные передаточные функции по напряжению и току фильтра, нагруженного на активное сопротивление $R_{\rm H}$.

4. По передаточным функциям рассчитать и построить амплитудно-частотные и фазочастотные характеристики. Определить границы полосы пропускания по напряжению и току. Сравнить полученные полосы пропускания друг с другом и с заданной полосой пропускания.

5. Рассчитать параметры Г-образного согласующего четырехполюсника, обеспечивающего передачу максимальной мощности в активную нагрузку $R_{\rm H}$ на частоте согласования.

6. Заменить каскадно включенные фильтр и согласующий четырехполюсник эквивалентным четырехполюсником и найти для него на частоте согласования модуль коэффициента передачи по напряжению. Провести сравнение величины коэффициента со значениями, полученными в пп.2 и 3, объяснить расхождения.

Примечание. При выполнении математических расчетов и построении графиков рекомендуется использовать прикладные математические пакеты MathCad и MatLab с последующим оформлением результатов.

Методические указания

ния задания на примере расчета фильтра варианта 32. Схема фильтра №16 (рис.4.2) представлена на рис.4.3. В соответствии с табл. 4.1. исходными параметрами для расчета яв-

 $ω_{\rm H} = n_{\rm H} · ω_1 = 10^4 {\rm c}^{-1}, ω_{\rm B} = n_{\rm B} · ω_1 = ∞, ω_{\rm c} = n_{\rm c} · ω_1 = 1,5 \cdot 10^4 {\rm c}^{-1}, R_{\rm H} = 1 {\rm κOM}, R_{\rm i} = 100 {\rm OM}, L_{\rm i} = 0,01 {\rm \Gamma H}.$

Рассчитываемый фильтр является режущим фильтром верхних частот. Качественный анализ его работы (рис.4.3) подтверждает этот факт.

На низких частотах сигнал подавляется за счет шунтирующего действия индуктивностей L_1 ; на резонансной частоте параллельно-

го контура $\omega = \omega_p = \frac{1}{\sqrt{L_0 C_0}}$ сигнал не попадает на выход фильт-

ра из-за нулевой проводимости контура; при $\omega \to \infty$, отношение $U_2/U_1 \to 1$. Таким образом, резонансная частота должна располагаться в полосе затухания.

1. Определение параметров элементов фильтра.

Параметры элементов рассчитываются из условий на границах полосы пропускания и на частоте согласования. Границы полосы пропускания симметричного реактивного фильтра, нагруженного на повторное сопротивление, определяются из соотношения: $A_{\phi} = \pm 1$.

Повторное сопротивление на частоте согласования $Z_{\Pi}(W_c) = \sqrt{B_{\phi}/C_{\phi}} = R_{\mu}$. А-параметры П-образного симметричного четырехполюсника находятся из следующих равенств:

$$A_{\phi} = D_{\phi} = 1 + Z_0 Y_1 = 1 - \frac{L_0}{L_1(\omega^2 / \omega_p^2 - 1)},$$

$$B_{\phi} = Z_0 = -\frac{j\omega L_0}{\omega^2 / \omega_p^2 - 1},$$

$$C_{\phi} = 2Y_1 + Y_1^2 Z_0 = \frac{j}{\omega L_1} [-2 + \frac{L_0}{L_1(\omega^2 / \omega_p^2 - 1)}],$$

(4.1)

где Z_0 – реактивное сопротивление продольной ветви фильтра, $Y_1 = \frac{1}{j\omega L_1}$ – реактивная проводимость поперечных ветвей.

Условие $A_{\phi}=1$ определяет верхнюю частоту полосы пропускания $\omega_{\rm B} = \infty$. Условие $A_{\phi}=-1$ приводит к равенству

$$\frac{L_1}{L_0} \left(\frac{\omega_{\rm H}^2}{\omega_{\rm p}^2} - 1 \right) = \frac{L_1}{L_0} \left[\frac{n_{\rm H}^2}{(n_{\rm H} - 1)^2} - 1 \right] = 0.5, \qquad (4.2)$$

35
где $\omega_{\rm p} = (n_{\rm H} - 1)\omega_{\rm 1}$ определяется условием задания (п.1) для режущего фильтра верхних частот (для режущего фильтра нижних частот $\omega_{\rm p} = (n_{\rm B} + 1)\omega_{\rm 1}$).

Повторное сопротивление с учетом (4.1) на частоте согласования равно:

$$z_{\Pi}(\omega_{c}) = \sqrt{\frac{B_{\phi}}{C_{\phi}}} = \frac{\omega_{c}L_{1}}{\sqrt{2\frac{L_{1}}{L_{0}}(\frac{\omega_{c}^{2}}{\omega_{p}^{2}} - 1) - 1}} =$$

$$= \frac{n_{c}\omega_{1}L_{1}}{\sqrt{2\frac{L_{1}}{L_{0}}(\frac{n_{c}^{2}}{(n_{H} - 1)^{2}} - 1) - 1}} = 10^{3} \text{ Om.}$$
(4.3)

Уравнения (4.2), (4.3) и равенство $\omega_{\rm p} = \frac{1}{\sqrt{L_0 C_0}} = 9 \cdot 10^3 \, {\rm c}^{-1}$ об-

разуют систему уравнений относительно параметров L_1, L_0, C_0 :

 $L_1 = 2,13L_0,$ 63,2 · $L^2_1 = L_1/L_0 - 0,281,$ $L_0C_0 = 12,3 \cdot 10^{-9}.$ Решение этой системы приводит к следующему результату:

 $L_1 = 0,171$ Гн, $L_0 = 0,0803$ Гн, $C_0 = 0,153$ мк Φ .

Если фильтр является полосовым, то система трех уравнений получается из двух условий на границах полосы пропускания и равенства $Z(\omega_c) = R_{\mu}$.

2. Построение графиков зависимости передаточной функции по напряжению и повторного сопротивления от частоты.

Модуль частотной передаточной функции по напряжению фильтра, нагруженного на повторное сопротивление, в полосе пропускания равен единице, а в полосе затухания $0 < \omega < \omega_{\text{H}}$ находится по формуле

$$K_U(\omega) = \left| \frac{U_2}{U_1} \right| = \frac{U_2}{U_1} = \frac{1}{\left| A_{\phi} + \sqrt{A_{\phi}^2 - 1} \right|}$$

Постоянная A_{ϕ} определяется из (4.1): $A_{\phi} = 1 - \frac{0.47}{\omega^2 / (81 \cdot 10^6) - 1}$.

График зависимости $K_U(\omega)$ представлен на рис.4.4.

На частоте резонанса ω_p параллельного контура $K_U = 0$ в полосе пропускания соответствующие гармоники ЭДС проходят через фильтр без подавления, в полосе затухания подавление является неполным.

Частотную характеристику модуля повторного сопротивления $Z_{n}(\omega)$ строим по формуле (4.3) заменой ω_{c} на ω . В полосе пропускания сопротивление является вещественной величиной (активное сопротивление), в полосе затухания – мнимой, возрастающей с увеличением частоты (индуктивное сопротивление). На частоте согласования $\omega_{c} = 1,5 \cdot 10^{4} \text{ c}^{-1}$ повторное сопротивление $Z_{n} = 1 \text{ кОм.}$

3. Получение частотных передаточных функций по напряжению и току для фильтра, нагруженного на активное сопротивление.

Выражения для передаточных функций фильтра можно получить из уравнений четырехполюсника с учетом равенства $R_2 = U_2^{R} / R_{_{\rm H}}$:

$$\mathbf{R}_{U}^{\mathbf{k}}(j\omega) = \frac{\mathbf{U}_{2}^{\mathbf{k}}}{\mathbf{U}_{1}^{\mathbf{k}}} = \frac{\mathbf{U}_{2}^{\mathbf{k}}}{A_{\phi}\mathbf{U}_{2}^{\mathbf{k}} + B_{\phi}\mathbf{R}_{2}^{\mathbf{k}}} = \frac{1}{A_{\phi} + B_{\phi}/R_{H}}$$
$$\mathbf{R}_{I}(j\omega) = \frac{\mathbf{R}_{2}}{\mathbf{R}_{1}} = \frac{\mathbf{R}_{2}}{C_{\phi}\mathbf{U}_{2}^{\mathbf{k}} + A_{\phi}\mathbf{R}_{2}^{\mathbf{k}}} = \frac{1}{C_{\phi}R_{H} + A_{\phi}},$$

Используя выражения для постоянных четырехполюсника (4.1.) и численные значения параметров L_1, L_0, C_0 , найдем

$$\mathbf{k}_{U}^{\mathbf{q}}(j\omega) = K_{U}(\omega)e^{j\phi_{U}(\omega)} = \frac{8,1 \cdot 10^{7} - \omega^{2}}{1,2 \cdot 10^{8} - \omega^{2} + j\omega \cdot 6,5 \cdot 10^{3}},$$
$$\mathbf{k}_{I}^{\mathbf{q}}(j\omega) = K_{I}(\omega)e^{j\phi_{I}(\omega)} = \frac{j\omega \cdot (8,1 \cdot 10^{7} - \omega^{2})}{\omega \cdot (1,19 \cdot 10^{8} - \omega^{2}) + j \cdot 1,17 \cdot 10^{4}(\omega^{2} - 10^{8})},$$

где $K_U(\omega), K_I(\omega)$ – амплитудно-частотные характеристики (АЧХ), являющиеся модулями передаточных функций; $\varphi_U(\omega), \varphi_I(\omega)$ – фазочастотные характеристики (ФЧХ), представляющие собой зависимости аргументов передаточных функций от частоты.

Частотные характеристики передаточных функций имеют вид

$$K_{U}(\omega) = \frac{\left|8,1 \cdot 10^{7} - \omega^{2}\right|}{\left[(1,2 \cdot 10^{8} - \omega^{2})^{2} + 42,25 \cdot 10^{6} \cdot \omega^{2}\right]^{0,5}},$$

$$\varphi_{U}(\omega) = -\arctan\frac{6,5 \cdot 10^{3} \omega}{1,2 \cdot 10^{8} - \omega^{2}} + \begin{cases}0^{0}, \text{при } \omega < 9 \cdot 10^{3}, \\180^{0}, \text{при } \omega > 9 \cdot 10^{3}, \\180^{0}, \text{при } \omega > 9 \cdot 10^{3}, \end{cases}$$

$$K_{I}(\omega) = \frac{\left|8,1 \cdot 10^{7} \omega - \omega^{3}\right|}{\left[\omega^{2}(1,19 \cdot 10^{8} - \omega^{2})^{2} + 1,37 \cdot 10^{8} \cdot (\omega^{2} - 10^{8})^{2}\right]^{0,5}},$$

 $\phi_{I}(\omega) = -\arctan\frac{1,17 \cdot 10^{4} \cdot (\omega^{2} - 10^{8})}{\omega \cdot (1,19 \cdot 10^{8} - \omega^{2})} + \begin{cases} 90^{\circ}, \text{ при } \omega < 9 \cdot 10^{3} \text{ и } \omega > 1,1 \cdot 10^{4} \\ -90^{\circ}, \text{ при } 10^{4} < \omega < 1,1 \cdot 10^{4}. \end{cases}$

На рис.4.5 приведены амплитудно-частотные, а на рис. 4.6 – фазочастотные характеристики по напряжению и току.

Отметим изменение полосы пропускания фильтра, нагруженного на активное сопротивление, по сравнению с заданной (сравниваются АЧХ по напряжению пп. 2 и 3). Полосы пропускания по напряжению и току не совпадают (см. рис. 4.5).

4. Определение параметров согласующего четырехполюсника.

Согласование нагрузки с генератором выполняется для передачи максимальной активной мощности в нагрузку. Оно реализуется с помощью согласующего реактивного четырехполюсника C (см. рис. 4.1) при условии равенства входного сопротивления согласующего четырехполюсника $Z_{BX} = R + jX$ сопряженному комплексу внутреннего сопротивления генератора $\overset{*}{Z}_i = R_i - jX_i$, т. е. $R = R_i$, $X = -X_i = -\omega_c L_i$. По заданию (п.4) согласование выполняется на частоте W_c , поэтому входное сопротивление фильтра равно $R_{\rm H}$. Возможные схемы согласующего четырехполюсника представлены на рис.4.7, *а* $(R_i < R_{\rm H})$ и б $(R_i > R_{\rm H})$.

Рис. 4.7

В рассматриваемом варианте $R_i < R_{\rm H}$. Для схемы рис. 4.7, *а*

$$Z_{\rm BX} = jX_1 + \frac{jX_2 \cdot R_{\rm H}}{R_{\rm H} + jX_2} = R_i - jX_i.$$

Приравнивая вещественные и мнимые части последнего равенства, получим систему уравнений для определения значений X_1, X_2 :

$$R_{\rm H}X_2^2/(R_{\rm H}^2+X_2^2) = R_i, \quad X_1 + R_{\rm H}^2X_2/(R_{\rm H}^2+X_2^2) = -X_i$$

Решение этой системы уравнений дает:

$$X_1 = -X_i \mathbf{m} \sqrt{R_i (R_H - R_i)} = -150 \mathbf{m} 300 \,\mathrm{Om},$$

 $X_2 = \pm R_H \sqrt{R_i / (R_H - R_i)} = \pm 333 \,\mathrm{Om}.$

Следовательно, согласование можно осуществить с помощью одной из схем на рис. 4.8:

a) $X_1 = -450$ Om, $X_2 = 333$ Om; *b*) $X_1 = 150$ Om, $X_2 = -333$ Om

Параметры *L* и *C* схем определены с учетом $\omega = \omega_c$.

Схема рис. 4.8, б является низкочастотным фильтром, и, следовательно, гармоники сигнала, лежащие в полосе пропускания основного фильтра, будут подавляться. Поэтому для сохранения частотных свойств рассчитанной цепи следует выбрать схему рис. 4.8, *a*, которая, так же как и основной фильтр, является фильтром верхних частот.

Постоянные выбранного согласующего четырехполюсника равны:

$$\begin{aligned} A_{\rm c} &= 1 + Z_1 Y_0 = 1 - \frac{1}{\omega^2 LC} = 1 - \frac{0,306 \cdot 10^9}{\omega^2}, \\ B_{\rm c} &= Z_1 + Z_2 + Z_1 Z_2 Y_0 = \frac{1}{j\omega C} = \frac{6,757 \cdot 10^6}{j\omega}, \\ C_{\rm c} &= Y_0 = \frac{1}{j\omega L} = \frac{45,25}{j\omega}, \quad D_{\rm c} = 1 + Z_2 Y_0 = 1. \end{aligned}$$

Матрица А-параметров эквивалентного четырехполюсника определяется произведением матриц каскадно включенных четырехполюсников:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A_{c} & B_{c} \\ C_{c} & D_{c} \end{bmatrix} \cdot \begin{bmatrix} A_{\phi} & B_{\phi} \\ C_{\phi} & D_{\phi} \end{bmatrix}$$

Модуль коэффициента передачи по напряжению эквивалентного четырехполюсника равен:

$$K_{U}(\boldsymbol{\omega}) = \left| \frac{\boldsymbol{\mathcal{B}}_{2}}{\boldsymbol{\mathcal{B}}_{1c}} \right| = \frac{1}{\left| \boldsymbol{A} + \boldsymbol{B} / \boldsymbol{R}_{\mathrm{H}} \right|},$$

где $A = A_c A_{\phi} + B_c C_{\phi}$, $B = A_c B_{\phi} + B_c D_{\phi}$. На частоте согласования $\omega = \omega_c = 1,5 \cdot 10^4 \text{ c}^{-1}$ для полученных значений параметров: A = -0,57; B = 0,736 - j206,55 Ом и $K_U(\omega_c) = 1,65$.

Полученное значение модуля частотной передаточной функции по напряжению несколько больше рассчитанного в пп. 2 и 3, что является результатом возрастания активной мощности сигнала на входе фильтра.

Задание 5 РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПЕРВОГО ПОРЯДКА

Постановка задачи

Рассчитать классическим методом переходный процесс в цепи постоянного тока с одним реактивным элементом. По результатам расчета записать мгновенные значения всех напряжений и токов в цепи после выполнения коммутации, построить графики рассчитанных функций в интервале времени $t = 0 \dots 3\tau$ с шагом $\Delta t = 0,25\tau$. Определить длительность переходного процесса.

Схема, параметры элементов и вид коммутации заданы табл. 5.1.

									1 u O JI H	ци Э.т
Вариант	Схема	ΕB	ΙΔ	L	С	R_1	R_2	R_3	R_4	Комму
Барлат	(рис.5.1)	Е, Б	5,11	мГн	мкΦ		тация			
1	а	120	-	1	-	20	20	40	20	3
2	б	-	2	-	10	40	20	10	30	Р
3	в	100	-	1	-	10	10	25	25	3
4	г	-	4	2	-	6	6	3	6	Р
5	9	150	-	-	10	50	50	25	25	3
6	е	-	6	2	-	3	3	3	3	Р
7	ж	120	-	-	5	40	50	20	40	3
8	3	-	8	1	-	2	4	4	2	Р
9	и	50	-	-	5	20	30	35	15	3
10	к	-	10	-	5	10	30	35	5	Р
11	л	80	-	10	~	20	60	60	40	3
12	м	-	12	-	5	12	3	6	3	Р
13	н	100	-	10	-	40	40	20	40	3
14	0	-	2	-	2	2	4	4	3	Р
15	п	160	-	-	10	20	60	50	30	3
16	р	-	4	1	-	1	3	4	2	Р
17	a	50	-	10	-	10	40	100	100	Р
18	б	-	6	-	1	20	10	5	15	3
	1	I	1	l	1	1	1	1	1	1

Таблица 5.1

Вариант	Схема (рис.5.1)	Е, В	<i>J</i> , A	<i>L</i> мГн	С мкФ	R_1	R_2	<i>R</i> ₃	R_4	Комму- ташия
19	6	60	-	20	-	5	5	15	15	Р
20	г	-	8	10	_	8	8	4	12	3
21	9	80	-	_	1	20	20	10	10	Р
22	е	-	10	10	-	2	2	4	4	3
23	ж	100	-	-	2	20	40	45	15	Р
24	3	-	2	2	-	4	2	1	5	3
25	и	120	-	-	5	40	10	30	30	Р
26	к	-	4	-	10	4	6	8	2	3
27	л	150	-	8	-	50	50	60	40	Р
28	м	-	6	-	8	12	6	3	3	3
29	н	180	-	8	-	20	20	40	40	Р
30	о	-	8	-	10	4	8	8	16	3
При	манаци		kiilot		l Woomog	.2 .				I

Рис. 5.1

 R_2

R.

Рис. 5.1 (продолжение)

솏

Рис. 5.1 (окончание)

Методические указания

Ход выполнения задания рассмотрим на примере расчета электрической цепи, схема которой приведена на рис. 5.2, *a*, ключ *K* замыкается. Параметры цепи: $R_1 = R_2 = R_3 = 10$ Ом; L = 0,1 Гн; E = 30 В.

1. Определение начальных условий.

Для определения начальных условий рассчитаем установившийся процесс в докоммутационной цепи (рис. 5.2, б). В установившемся режиме в цепи постоянного тока катушка индуктивности может быть заменена короткозамкнутым участком.

Используя метод эквивалентных преобразований, получим

$$i_{1}(0_{-}) = \frac{E}{R_{1} + R_{2}R_{3}/(R_{2} + R_{3})} = 2 \text{ A};$$

$$i_{2}(0_{-}) = i_{1}(0_{-}) \cdot \frac{R_{3}}{R_{2} + R_{3}} = 1 \text{ A};$$

$$i_{3}(0_{-}) = i_{L}(0_{-}) = i_{1}(0_{-}) \cdot \frac{R_{2}}{R_{2} + R_{3}} = 1 \text{ A}; \quad u_{L}(0_{-}) = 0.$$

Значение тока через катушку индуктивности $i_{\rm L}(0_{-})$ является независимым начальным условием, значения остальных физических переменных – зависимыми начальными условиями.

2. Получение дифференциального уравнения для послекоммутационной цепи.

Система уравнений по законам Кирхгофа для послекоммутационной цепи (рис. 5.2, в):

$$i_1 = i_2 + i_L;$$

 $i_1 R_1 + i_2 R_2 = E;$
 $i_2 R_2 = L di_L / dt.$
(5.1)

Сведем систему (5.1) к одному дифференциальному уравнению относительно переменной, удовлетворяющей законам коммутации. В рассматриваемом случае этой переменной является ток через катушку индуктивности:

$$\frac{di_L}{dt} + \frac{R_1 R_2}{L(R_1 + R_2)} i_L = \frac{ER_2}{L(R_1 + R_2)}.$$
(5.2)

Согласно классическому методу общее решение неоднородного дифференциального уравнения ищем в виде суммы двух составляющих: общего решения однородного уравнения, называемого свободной составляющей, и частного решения неоднородного уравнения, называемого принужденной составляющей:

$$i_L(t) = i_{L_{\rm CB}} + i_{L_{\rm TD}}$$

3. Определение принужденной составляющей.

Принужденную составляющую тока определяют из расчета установившегося режима в послекоммутационной цепи (рис. 5.2, *в*, катушка индуктивности замещается короткозамкнутым участком):

 $i_{L_{\Pi D}} = E/R_1 = 30/10 = 3$ A.

4. Определение свободной составляющей.

Решение однородного дифференциального уравнения, соответ-

ствующего уравнению(5.2), $\frac{di_L}{dt} + \frac{R_1R_2}{L(R_1 + R_2)}i_L = 0$, имеет вид

 $i_{L_{CB}} = Ae^{pt}$. Характеристическое уравнение цепи

$$p + \frac{R_1 R_2}{L(R_1 + R_2)} = 0.$$

Корень характеристического уравнения

$$p = -\frac{R_1 R_2}{L(R_1 + R_2)} = -50 \text{ c}^{-1}$$

Модуль этой величины характеризует скорость уменьшения свободной составляющей и называется коэффициентом затухания. Величина, обратная коэффициенту затухания, имеет размерность времени и называется постоянной времени пи: $\tau = |l/p| = 0.02$ с. Она определяет время, за которое свободная составляющая уменьшается в e = 2,718 раз.

Постоянную интегрирования A определяем из начальных условий, используя первый закон коммутации, согласно которому $i_L(0_+) = i_L(0_-) = 1$ А.

Ток в катушке индуктивности в момент времени $t = 0_+$ равен: $i_L(0_+) = i_{L \, пp}(0_+) + i_{L c B}(0_+) = E/R_1 + A = i_L(0_-)$.

Отсюда постоянная интегрирования $A = i_L(0_-) - E/R_1 = -2A$ и свободная составляющая тока

$$i_{LCB} = -2e^{-50t} A.$$

5. Получение решений для всех физических переменных. Построение графиков.

Общее решение для тока в катушке индуктивности:

$$i_L(t) = i_{L \Pi p} + i_{L C B}(t) = 3 - 2e^{-50t} A$$

Остальные переменные получаем подстановкой найденного

решения $i_L(t)$ в исходную систему дифференциальных уравнений (5.1):

$$u_L(t) = L di_L / dt = (-A \cdot L / \tau) e^{-t/\tau} = 10 \cdot e^{-50t} \text{ B},$$

$$i_2(t) = u_L(t) / R_2 = e^{-50t} \text{ A}, \ i_1(t) = i_2(t) + i_L(t) = 3 - e^{-50t} \text{ A}$$

Графики, соответствующие полученным решениям, приведены на рис. 5.3.

Из графиков видно, что ток в индуктивности экспоненциально изменяется от начального значения $i_L(0.) = 1$ до конечного, равного $i_{Lnp}=3$ A, т. е. граничные условия переходного процесса выполнены.

Для момента времени $t = 3\tau$ значение любой переменной отличается от принужденной составляющей всего на 5%. Поэтому принято считать, что длительность переходного процесса составляет: $t_{nn} = 3\tau$. В рассматриваемом случае $t_{nn} = 60$ мс.

Задание 6 РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ВТОРОГО ПОРЯДКА

Постановка задачи

В цепи постоянного тока, изображенной на рис. 6.1, происходит коммутация в момент времени *t* = 0.

Величина ЭДС источника E = const задается преподавателем. Параметры схемы и характер переключения ключей для каждого варианта заданы в табл. 6.1. Прочерки в столбцах *a*, *b*, *c*, *d*. *f*, *q*, *m*, *n* означают отсутствие элемента. Прочерк в столбцах K1 - K5 соответствует замкнутому положению ключа. Буква «З» означает операцию замыкания, буква «Р» – операцию размыкания соответствующего ключа.

В таблице элемент, сопротивление которого задано в омах, является резистором *R*.

Содержание задания

1. Найти классическим методом законы изменения токов *i*₁, *i*₂, *i*₃ и напряжений на всех элементах цепи.

2. Найти операторным методом закон изменения тока или напряжения в одной из ветвей цепи.

3. Построить временные диаграммы токов *i*₁, *i*₂, *i*_{3.} Проверить выполнение первого закона Кирхгофа.

4. Построить временные диаграммы напряжений для одного из контуров, содержащего конденсатор и катушку индуктивности. Проверить выполнение второго закона Кирхгофа.

5. Составить математическую модель переходного процесса по методу переменных состояния. Полученные уравнения решить на компьютере с помощью прикладной математической программы (MathCAD, MathLab и др).

6. Сравнить результаты расчета, полученные различными методами.

Методические указания

Рассмотрим порядок расчета переходных процессов на примере цепи варианта 30, схема которой представлена на рис. 6.2. Параметры цепи: E = 104 B, $R_1 = 20$ OM, $R_2 = 100$ OM, $R_3 = 500$ OM, L = 0.02 Гн, C = 0.5 мкФ.

Рис. 6.2

I. Расчет переходного процесса классическим методом

1. Построение математической модели электрической цепи. Для послекоммутационной цепи составляем по законам Кирхгофа систему дифференциальных уравнений, дополненную (при необходимости) уравнениями связи:

$$u_r = R \cdot i_r, \quad u_L = L \cdot di_L / dt, \quad i_C = C \cdot du_C / dt.$$

Для рассматриваемой цепи с двумя узлами и тремя ветвями она содержит три уравнения по законам Кирхгофа и одно уравнение связи:

$$i_{1} - i_{2} - i_{3} = 0,$$

$$L \frac{di_{1}}{dt} + (R_{1} + R_{2})i_{1} + R_{3}i_{2} = E,$$

$$-R_{3}i_{2} + u_{C} = 0,$$

$$i_{3} = C \frac{du_{C}}{dt}.$$
(6.1)

2. Составление дифференциального уравнения цепи.

Систему (6.1) путем последовательного исключения переменных сводим к одному дифференциальному уравнению второго порядка относительно переменной, удовлетворяющей законам коммутации (относительно тока $i_{\rm L}$ или напряжения $u_{\rm C}$). Для примера составим дифференциальное уравнение относительно *u*_C. Из третьего и первого уравнений (6.1)

$$i_2 = \frac{u_C}{R_3},\tag{6.2}$$

$$i_1 = i_2 + i_3 = \frac{u_C}{R_3} + C \frac{du_C}{dt}.$$
(6.3)

Дифференцируя (6.3) и подставляя результат во второе уравнение (6.1), получим

$$\frac{d^2 u_C}{dt^2} + \frac{L + R_3 C(R_1 + R_2)}{LCR_3} \frac{du_C}{dt} + \frac{R_1 + R_2 + R_3}{LCR_3} u_C = \frac{E}{LC}.$$
 (6.4)

Согласно классическому методу расчета, решение дифференциального уравнения (6.4) ищем в виде двух составляющих – принужденной и свободной:

$$u_C = u_{\rm Cnp} + u_{\rm Ccb} \,. \tag{6.5}$$

3. Определение начальных условий.

3.1. Независимые начальные условия, т.е. ток в катушке индуктивности $i_1(0_+)$ и напряжение на конденсаторе $u_{\rm C}(0_+)$, определяем расчетом установившегося процесса в докоммутационной цепи (резистор R_2 закорочен):

$$i_{1}(0_{+}) = i_{1}(0_{-}) = \frac{E}{R_{1} + R_{3}} = 104/(20 + 500) = 0,2 \text{ A},$$

$$u_{C}(0_{+}) = u_{C}(0_{-}) = \frac{E}{R_{1} + R_{3}} \cdot R_{3} = 104 \cdot 500/(20 + 500) = 100 \text{ B}.$$
(6.6)

3.2. Зависимые начальные условия, т.е. значения остальных токов и напряжений на момент $t = 0_+$, определяем из системы уравнений (6.1) при подстановке в нее независимых начальных условий:

$$i_{1}(0_{+}) = i_{2}(0_{+}) + i_{3}(0_{+}),$$

$$L \frac{di_{1}}{dt}\Big|_{t=0_{+}} + (R_{1} + R_{2}) \cdot i_{1}(0_{+}) + R_{3} \cdot i_{2}(0_{+}) = E,$$

$$-R_{3} \cdot i_{2}(0_{+}) + u_{C}(0_{+}) = 0,$$

$$i_{3}(0_{+}) = C \frac{du_{C}}{dt}\Big|_{t=0_{+}}.$$
(6.7)

Решение (6.7) дает:

$$i_2(0_+) = \frac{u_C(0_+)}{R_3} = \frac{100}{500} = 0,2 \text{ A},$$

 $i_3(0_+) = i_1(0_+) - i_2(0_+) = 0,2 - 0,2 = 0,$
 $u_L(0_+) = L \frac{di_1}{dt} \Big|_{t=0_+} = E - (R_1 + R_2) \cdot i_1(0_+) - R_3 \cdot i_2(0_+) =$
 $= 104 - (20 + 100) \cdot 0,2 - 500 \cdot 0,2 = -20 \text{ B},$
 $\frac{di_1}{dt} \Big|_{t=0_+} = \frac{u_L(0_+)}{L} = -\frac{20}{0,02} = -1000 \text{ A/c},$
 $\frac{du_C}{dt} \Big|_{t=0_+} = \frac{i_3(0_+)}{C} = 0.$
Значения производных $\frac{di_1}{dt}$ и $\frac{du_C}{dt}$ на момент времени $t = 0_+$

необходимы для последующего определения постоянных интегрирования.

4. Определение принужденной составляющей.

В случае подключения цепи к источнику постоянной или синусоидальной ЭДС принужденный режим совпадает с установившимся режимом (при $t \to \infty$).

Для послекоммутационной цепи после окончания переходного процесса (см. рис. 6.2)

$$u_{\rm Cnp} = \frac{E}{R_1 + R_2 + R_3} \cdot R_3 = \frac{104 \cdot 500}{20 + 100 + 500} = 83,87 \text{ B.}$$
 (6.8)

Такой же результат получается из уравнения (6.4), если учесть, что при постоянной ЭДС

$$u_{C \operatorname{np}} = \operatorname{const}, \quad \frac{du_{C \operatorname{np}}}{dt} = 0, \quad \frac{d^2 u_{C \operatorname{np}}}{dt^2} = 0.$$

5. Определение свободной составляющей.

Свободная составляющая является решением однородного дифференциального уравнения, которое для рассматриваемого примера имеет вид

$$\frac{d^2 u_C}{dt^2} + \frac{L + R_3 C(R_1 + R_2)}{LCR_3} \frac{du_C}{dt} + \frac{R_1 + R_2 + R_3}{LCR_3} u_C = 0.$$
(6.9)

Запись свободной составляющей определяется видом корней характеристического уравнения: при вещественных корнях

$$u_{C_{\rm CB}} = A_1 e^{p_1 t} + A_2 e^{p_2 t} \tag{6.10}$$

при комплексно-сопряженных

$$u_{C_{\rm CB}} = A \cdot e^{-\delta t} \sin(\omega t + \psi), \qquad (6.11)$$

где $p_{1,2}$ – корни характеристического уравнения; A_1 , A_2 , A, ψ – постоянные интегрирования.

5.1. Определение корней характеристического уравнения.

Характеристическое уравнение, соответствующее дифференциальному уравнению (6.4), имеет вид

$$p^2 + 2\delta p + \omega_0^2 = 0.$$
 (6.12)

При $\delta > \omega_0$ его корни будут вещественными отрицательными:

$$p_1 = -\delta + \sqrt{\delta^2 - \omega_0^2}$$
, $p_2 = -\delta - \sqrt{\delta^2 - \omega_0^2}$, (6.13)

а переходный процесс – апериодическим.

При $\delta < \omega_0$ корни уравнения комплексно-сопряженные с отрицательной вещественной частью:

$$p_1 = -\delta + j\sqrt{\omega_0^2 - \delta^2} = -\delta + j\omega,$$

$$p_2 = -\delta - j\sqrt{\omega_0^2 - \delta^2} = -\delta - j\omega,$$
(6.14)

а переходный процесс – колебательный. В последнем случае δ называют коэффициентом затухания переходного процесса, а ω – частотой свободных колебаний.

Для цепи рис. 6.2, согласно уравнению (6.4),

$$\delta = \frac{L + R_3 C \cdot (R_1 + R_2)}{2LCR_3} = 5000 \text{ c}^{-1},$$
$$\omega_0 = \sqrt{\frac{R_1 + R_2 + R_3}{LCR_3}} = 11135 \text{ c}^{-1}.$$

Корни характеристического уравнения $p_{1,2} = (-5000 \pm j \ 9950) \ c^{-1}$

(6.15)

комплексно-сопряжённые, переходный процесс колебательный, время переходного процесса $t_{nn} = 3\tau = 3/\delta = 0,6\cdot 10^{-3}$ с, период свободных колебаний $T_{cB} = \frac{2\pi}{\omega} = 0,6312\cdot 10^{-3}$ с соизмерим со временем переходного процесса.

5.2. Определение постоянных интегрирования.

Для определения постоянных интегрирования используем начальные условия: значения искомой переменной и ее производной в момент коммутации t = 0, полученные в п.3.

Случай вещественных корней.

Общее решение для напряжения $u_{C}(t)$

$$u_C(t) = u_{Cnp} + A_1 e^{p_1 t} + A_2 e^{p_2 t}, \qquad (6.16)$$

а для его производной:

$$\frac{du_C}{dt} = p_1 A_1 e^{p_1 t} + p_2 A_2 e^{p_2 t}.$$
(6.17)

Уравнения (6.16) и (6.17) для момента времени t = 0 образуют систему для определения постоянных интегрирования A_1, A_2 :

$$\begin{aligned} u_C(0) &= u_{Cnp} + A_1 + A_2, \\ \frac{du_C}{dt} \bigg|_{t=0} &= A_1 p_1 + A_2 p_2. \end{aligned}$$
 (6.18)

Случай комплексно-сопряженных корней.

Общие решения для напряжения $u_{C}(t)$ и его производной:

$$u_C(t) = u_{C \Pi p} + A e^{-\delta t} \sin(\omega t + \psi), \qquad (6.19)$$

$$\frac{du_C}{dt} = -A\delta \cdot e^{-\delta t} \sin(\omega t + \psi) + A\omega \cdot e^{-\delta t} \cos(\omega t + \psi).$$
(6.20)

Уравнения (6.19) и (6.20) для момента времени t = 0 образуют систему уравнений для определения постоянных интегрирования A, ψ :

$$u_{C}(0) = u_{C \pi p} + A \sin \psi,$$

$$\frac{du_{C}}{dt}\Big|_{t=0} = -A\delta \sin \psi + A\omega \cos \psi.$$
(6.21)

Для рассматриваемого примера (см. рис. 6.2) система уравнений (6.21) имеет вид

$$\frac{R_3}{R_1 + R_3} E = \frac{R_3}{R_1 + R_2 + R_3} E + A\sin\psi,$$

$$0 = -\delta \cdot A\sin\psi + \omega \cdot A\cos\psi.$$

55

Решение уравнений дает $\psi = \operatorname{arctg}(\omega/\delta) = 63,3^{\circ}$,

$$A = \frac{ER_3}{\sin\psi} \cdot (\frac{1}{R_1 + R_3} - \frac{1}{R_1 + R_2 + R_3}) = 18,05 \,\mathrm{B}$$

6. Получение решений для всех физических переменных цепи.

Решение для напряжения на конденсаторе получим подстановкой найденных значений принужденной и свободной составляющих в общее выражение (6.5):

$$u_C(t) = 83,87 + 18,05e^{-5000t} \sin(9950t + 63,3^{\circ}).$$

Правильность решения проверяют на соответствие граничным условиям:

при
$$t = 0$$
 $u_{\rm C}(0) = 83,87+18,05 \sin 63,3^{\circ} = 100$ B;

при $t \to \infty$ $u_{\rm C}(\infty) = 83,87 = u_{\rm Cnp}$.

Напряжения на остальных элементах цепи и токи i_1 , i_2 , i_3 определяем из исходной системы (6.1) после подстановки в нее найденного решения для $u_{\rm C}(t)$:

$$i_{3}(t) = C \frac{du_{C}}{dt} = 5 \cdot 10^{-7} e^{-5000t} \cdot 18,05 \cdot [-5000 \cdot \sin(9950t + 63,3^{\circ}) + 9950 \cdot \cos(9950t + 63,3^{\circ})] =$$

= $e^{-5000t} \cdot [0,045 \cdot \sin(9950t - 116,7^{\circ}) + 0,09 \cdot \sin(9950 + 153,3^{\circ})] =$
= $-0,1006 \cdot e^{-5000t} \sin 9950t$, A;
 $i_{2}(t) = \frac{u_{C}}{R_{3}} = 0,1677 + 0,0361 \cdot e^{-5000t} \sin(9950t + 63,3^{\circ})$, A;
 $i_{1}(t) = i_{2} + i_{3} = 0,1677 + e^{-5000t} [0,0361\sin(9950t + 63,3^{\circ}) - -0,1006\sin 9950t)] = 0,1677 + 0,09035 \cdot e^{-5000t} \sin(9950t + 159^{\circ})$, A;

$$u_L(t) = L\frac{di_1}{dt} = 0,02 \cdot 0,09035 \cdot e^{-5000t} [-5000 \sin(9950t + 159^{\circ})] =$$

= +9950 \cos(9950t + 159^{\overline})] =

 $=1,807 \cdot e^{-5000t} [5\sin(9950t - 21^{\circ}) + 9,95\sin(9950t - 111^{\circ})] =$ = 20,12 \cdot e^{-5000t} \sin(9950t - 84^{\overline}), B;

$$u_{R1}(t) = i_1 R_1 = 3,354 + 1,807 \cdot e^{-5000t} \sin(9950t + 159^{\circ}), \text{B};$$

$$u_{R2}(t) = i_1 R_2 = 16,77 + 9,035 \cdot e^{-5000t} \sin(9950t + 159^{\circ}), \text{B}.$$

Примечание. При операциях с синусоидальными функциями рекомендуется использовать комплексный метод с последующим переходом к оригиналу.

На рис. 6.3 приведены графики напряжений $u_C(t), u_L(t), u_{R1}(t), u_{R2}(t)$. Для момента времени $t = 2 \cdot 10^{-4}$ с проверено выполнение II закона Кирхгофа:

 $u_L + u_{R1} + u_{R2} + u_C = E:3,7 + 2,69 + 13,45 + 84,18 = 104,02.$

Графики токов $i_1(t)$, $i_2(t)$, $i_3(t)$ приведены на рис. 6.4. Проверка выполнения первого закона Кирхгофа $i_1 - i_2 - i_3 = 0$ для того же момента времени $t = 2 \cdot 10^{-4}$ с дает: 0,135–0,169 +0,034=0.

При колебательном переходном процессе (корни характеристического уравнения комплексные) графики строят для промежутка времени $t = 1,5 \cdot T$, где $T = 2\pi/\omega$ – период колебаний. При апериодическом процессе (корни характеристического уравнения вещественные) этот промежуток составляет: $3\tau_{\text{max}} = \frac{1}{|p_{\text{min}}|}$, где t_{max} –

наибольшая постоянная времени, полученная при расчете свободной составляющей.

В указанных промежутках должны быть рассчитаны не менее 15 точек для колебательного процесса и не менее 10 для апериодического процесса.

II. Расчет переходного процесса операторным методом

1. Строим операторную схему замещения послекоммутационной цепи. Для этого необходимо:

– мгновенные значения токов, напряжений и ЭДС заменить их изображениями по Лапласу;

– катушку индуктивности заменить последовательным соединением операторного сопротивления pL и добавочного источника, ЭДС которого совпадает по направлению с током $i_L(0_-)$ и равна $L \cdot i(0_-)$;

– конденсатор заменить последовательным соединением операторного сопротивления 1/pC и добавочного источника, ЭДС которого направлена противоположно напряжению $u_C(0_-)$ и равна $u_C(0_-)/p$.

Операторная схема для рассматриваемой цепи изображена на рис. 6.5.

2. Для полученной схемы замещения составляем систему уравнений по первому и второму законам Кирхгофа в операторной форме. Для рассматриваемого примера она имеет вид

$$I_{1}(p) - I_{2}(p) - I_{3}(p) = 0,$$

$$(pL + R_{1} + R_{2})I_{1}(p) + R_{3}I_{2}(p) = \frac{E}{p} + Li_{1}(0),$$

$$\frac{1}{pC}I_{3}(p) - R_{3}I_{2}(p) = -\frac{u_{C}(0)}{p},$$

$$I_{3}(p) = C \cdot [pU_{C}(p) - u_{C}(0)].$$
(6.22)

3. Решаем систему уравнений относительно изображения по Лапласу искомой переменной (в рассматриваемом случае относительно $U_c(p)$). Решение должно быть представлено в виде отношения двух полиномов оператора *p*:

$$U_C(p) = \frac{G(p)}{H(p)}.$$

При этом необходимо добиться того, чтобы в составе H(p) множитель при p в наивысшей степени был равен единице, как это требуется при разложении дроби на простейшие:

$$U_{C}(p) = \frac{p^{2}u_{C}(0) + \left[\frac{R_{1} + R_{2}}{L} \cdot u_{C}(0) + \frac{1}{C} \cdot i_{1}(0)\right]p + \frac{1}{LC}E}{p\left[p^{2} + \left(\frac{R_{1} + R_{2}}{L} + \frac{1}{R_{3}C}\right)p + \frac{R_{1} + R_{2} + R_{3}}{R_{3}LC}\right]}.$$

После подстановки численных значений параметров и начальных условий получим

$$U_C(p) = \frac{100p^2 + 10^6 p + 104 \cdot 10^8}{p(p^2 + 10^4 p + 1,24 \cdot 10^8)}.$$
 (6.23)

4. По теореме разложения находим оригинал – закон изменения искомой переменной (в рассмотренном примере $u_C(t)$). В простейших случаях оригинал можно находить по формулам соответ-

ствия: f(t) = F(p).

Воспользуемся формулой разложения:

$$u_C(t) = \sum_{k=1}^m \frac{G(p_k)}{H'(p_k)} \cdot e^{p_k t}$$

где p_k – корни уравнения H(p) = 0.

Для полученного выражения (6.23)

 $p_{1} = 0, \quad p_{2,3} = -5000 \pm j9950; \quad H'(p) = 3p^{2} + 2 \cdot 10^{4} p + 1,24 \cdot 10^{8};$ $\frac{G(p_{1})}{H'(p_{1})} = \frac{104 \cdot 10^{8}}{1,24 \cdot 10^{8}} = 83,87; \quad \frac{G(p_{2,3})}{H'(p_{2,3})} = 9,025 \cdot e^{\mathbf{m}j26,7^{0}}.$

Подстановка в формулу разложения дает:

$$u_{C}(t) = 83,87 + 9,025 \cdot e^{-5000t} \cdot (e^{j(9950t - 26,7^{\circ})} + e^{-j(9950t - 26,7^{\circ})}) = 83,87 + 18,05 \cdot e^{-5000t} \sin(9950t + 63,3^{\circ}).$$

Полученное решение полностью совпадает с решением, полученным ранее классическим методом.

III. Расчет переходного процесса методом переменных состояния.

В основе метода переменных состояния лежит запись исходной системы дифференциальных уравнений (6.1) в канонической форме Коши. При этом в качестве переменных состояния принимаем токи в катушках индуктивности и напряжения на конденсаторах, которые однозначно определяют запас энергии в любой момент времени. Переходный процесс в рассматриваемой цепи описывается системой дифференциальных уравнений в форме Коши и системой начальных условий.

Из системы уравнений (6.1) получаем

$$\frac{di_1}{dt} = -\frac{R_1 + R_2}{L}i_1 - \frac{1}{L}u_C + \frac{1}{L}E,$$

$$\frac{du_C}{dt} = \frac{1}{C}i_1 - \frac{1}{CR_3}u_C.$$
(6.23)

Подставим числовые значения параметров цепи:

$$\frac{di_1}{dt} = -6 \cdot 10^3 i_1 - 50u_C + 50 \cdot 104,$$

$$\frac{du_C}{dt} = 2 \cdot 10^6 i_1 - 4 \cdot 10^3 u_C.$$
 (6.24)

Записываем начальные условия:

$$i_1(0) = 0,2A,$$

 $u_C(0) = 100B.$ (6.25)

Систему уравнений (6.24) можно решить одним из численных методов. Так, например, в пакете MathCAD приведены программы численного решения дифференциальных уравнений модифицированным методом Эйлера и методом Рунге – Кутта. Поскольку погрешность решения методом Эйлера достигает нескольких процентов, то предпочтительным является метод Рунге – Кутта, обеспечивающий контроль точности вычислений на каждом шаге интегрирования и программную регулировку шага.

Систему уравнений (6.24) и начальные условия (6.25) запишем в матричном виде:

$$A := \begin{pmatrix} -6 \cdot 10^3 & -50\\ 2 \cdot 10^6 & -4 \cdot 10^3 \end{pmatrix}, B := \begin{pmatrix} 50\\ 0 \end{pmatrix}, E := 104,$$
$$F := B \cdot E = \begin{pmatrix} 50\\ 0 \end{pmatrix} \cdot 104, X(0) = \begin{pmatrix} 0,2\\ 100 \end{pmatrix},$$

где *А* – собственная матрица системы; *В* – вектор коэффициентов при воздействиях; *X*(0) – вектор начальных условий; *E* – величина входных воздействий.

В системе MathCAD программа интегрирования уравнений по методу Рунге – Кутта имеет имя Rkfixed. Обращение к ней производится через оператор присвоения какой-либо переменной (например, *Z*) имени программы:

$$Z := \operatorname{Rkfixed}(X, 0, t_k, n, D), \tag{6.26}$$

где Х – вектор переменных состояния, размер которого определяется вектором начальных значений *x*(0) и соответствует числу уравнений состояния; 0 и *t* _k- начало и конец временного интервала интегрирования; *n* – число точек на интервале интегрирования; $D - \phi$ ункция, которая описывает правую часть уравнений, разрешенных относительно первых производных.

Для линейных цепей функция *D* имеет вид линейного матричного преобразования:

$$D(t, x) = Ax + F.$$
 (6.27)

Все элементы матриц А и F должны быть определены перед обращением к программе Rkfixed.

Решение получаем в виде матрицы Z, где первый столбец соответствует дискретным значениям времени t. Остальные столбцы соответствуют значениям переменных состояния.

Пример решения системы уравнений с помощью программы MathCAD приводится на рис. 6.6.

$A := \begin{pmatrix} -6 \cdot 10^{3} & -50 \\ 2 \cdot 10^{6} & -4 \cdot 10^{3} \end{pmatrix} \qquad F := \begin{pmatrix} -6 \cdot 10^{3} & -6 \end{pmatrix}$	$\begin{pmatrix} 50\\0 \end{pmatrix}$ · 104	$X := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\left(\begin{array}{c} 0.2\\00\end{array}\right)$	
$\begin{split} D(t, X) &:= A \cdot X + F \\ n &:= 500 \\ Z &:= rkfixed(X, 0, 0.00 l, n, D) \\ t &:= Z^{\langle 0 \rangle} \\ i_L &:= Z^{\langle 1 \rangle} \qquad U_C &:= Z^{\langle 2 \rangle} \end{split}$	Применение Решение Z г размера N x матрицы Z ^{-CC} следующие значения фу соответству	<u>е метода Р</u> представл 3. Первыі > содержи столбцы 2 инкций і _L ющие этиі	<u>унге-Кутта</u> яет собой й столбец ит моменти с<1>, Z<2> и U _C , м момента	а <u>.</u> матрицу этой ы времени, содержат ам.
$\frac{i_{L} \cdot 500}{U_{C}} \xrightarrow{90} 80$				

Задание 7

РАСЧЕТ НЕЛИНЕЙНЫХ ЦЕПЕЙ

Постановка задачи

Катушка с ферромагнитным сердечником, имеющая число витков w, включена в цепь, питаемую источником постоянного напряжения U_0 (рис. 7.1).

Параметры цепи: $R_1 = 4$ Ом , $R_2 = 5$ Ом. Катушка намотана проводом, каждый виток которого имеет сопротивление 0,01 Ом , и следовательно, сопротивление катушки, имеющей *w* витков, равно: $R_w = w \cdot 10^{-2}$ Ом .

Вольт-амперная характеристика нелинейного резистора $R_{\rm H}$ аппроксимируется выражением $U_{\rm H} = a I_{\rm H}^2$. Значения коэффициента *а* для различных учебных групп: $a_1 = 8$ B/A², $a_2 = 10$ B/A², $a_3 = 12$ B/A².

Величина напряжения источника, число витков катушки и геометрические размеры однородного ферромагнитного сердечника для каждого варианта приведены в табл.7.1. Для ветви с зазором б под *l* подразумевается суммарная длина ее стальных участков (без зазора).

Кривая намагничивания материала сердечника приведена в табл. 7.2.

Таблица 7.1

Вариант	<i>U</i> ₀ , В	W витков	Обмотка находится на ветви	<i>l</i> ₁ ,	<i>l</i> ₂ ,	<i>l</i> ₃ ,	<i>S</i> ₁ ,	S_2 ,	<i>S</i> ₃ ,	δ, мм	Зазор устроен в ветви
1	20	415	1	20	25	60	57	3.0	9.5	0.5	1
2	85	400	3	45	22	40	15.4	10.4	15	0,3	3
3	12.5	400	1		$\frac{22}{20}$		60	84	60	0.35	2
4	2.7	500	2	20	7	20	8	2	78	0.1	1
5	4.3	3000	1	85	33	85	100	200	100	0.25	2
6	36.5	100	3	30	10	30	4	6	4	0.5	1
7	18,5	400	1	32	25	40	14,4	10,5	15	1	3
8	27	160	1	55	18	57	55	84	57	0,12	2
9	44	40	2	13,5	4,32	19,8	2,5	1,9	1,75	0,1	1
10	7,6	750	1	70	35	70	97	220	92	0.52	2
11	7	625	3	25	14	25	4	6,15	3,9	0,15	1
12	9,4	600	1	40	20	40	15	10,3	15	0,21	3
13	8,8	460	3	65	22	62	71	84	62	0,25	2
14	7.4	200	2	19,5	10	24,2	7,7	2,1	3,8	0,1	1
15	40	125	1	100	28	95	104	182	200	0,18	2
16	33	350	1	35	18	20	4,1	5,8	3,8	0,25	1
17	4	1000	3	35	18	40	14,6	10,2	15	0,15	3
18	29,2	200	1	58	19	55	58	84	55	0,3	2
19	16,2	200	3	29,8	13	25	8,2	2,2	4,8	0,1	1
20	9,3	600	1	110	27	100	105	117	240	0,2	2
21	29	455	1	40	10	40	4,1	2	4,15	0,5	1
22	4,9	1500	1	48	20	40	15,6	10,3	15	0,25	3
23	7,2	650	1	63	21	65	66,5	84	65	0,4	2
24	35,7	500	2	42,5	20	40,5	9	2,4	7	0,1	1
25	37,6	150	1	90	30	90	100	188	100	0,35	2
26	28,5	440	1	21	24	78	5,8	4	9,6	0,6	1
27	7	410	3	46	21	38	16	11	15	0,18	3
28	13	390	1	58	22	57	62	85	60	1,3	2
29	3,03	480	2	18	9	21	8	3	4,8	0,11	1
30	4,4	2700	1	87	35	88	102	210	98	0,28	2

											Табли	<u>ица 7.</u> 2
А/м	0	10	20	40	60	80	120	200	400	600	800	1000
Тл	0	0,08	0,22	0,75	0,93	1,02	1,14	1,38	1,47	1,53	1,57	1,61

Содержание задания

1. Рассчитать нелинейную электрическую цепь и определить МДС, действующую в магнитной цепи.

2. Рассчитать магнитную цепь.

2.1. По известной МДС методом графического суммирования вебер-амперных характеристик найти магнитные потоки в ветвях ферромагнитного сердечника (прямая задача).

2.2. Проверить полученные результаты путем решения обратной задачи, т. е. считая известным магнитный поток в одной из ветвей магнитной цепи, определить МДС, создаваемую катушкой.

3. Найти статическую индуктивность катушки.

Методические указания

1. Расчёт нелинейной электрической цепи.

Для определения тока I в обмотке катушки рассчитаем нелинейную электрическую цепь методом эквивалентного генератора, представив линейную часть цепи эквивалентным источником ЭДС с параметрами $E_{\rm эг}$, $R_{\rm эг}$ (рис. 7.2).

ЭДС E_{3r} равно напряжению на зажимах $a - \delta$ (см. рис. 7.1) при отключенном сопротивлении $R_{\rm H}$. Внутреннее сопротивление R_{3r} находим как эквива-

лентное сопротивление цепи относительно зажимов $a - \delta$ при отключенном сопротивлении $R_{\rm H}$ и закороченном источнике напряжения.

По второму закону Кирхгофа (рис. 7.2)

$$E_{\rm ЭГ} = R_{\rm ЭГ}I + U_{\rm H} = R_{\rm ЭГ}I + aI^2,$$
откуда $I = -\frac{R_{\rm ЭГ}}{2a} + \sqrt{\frac{R^2_{\rm ЭГ}}{4a^2} + \frac{E_{\rm ЭΓ}}{a}}.$

2. Расчет магнитной цепи.

Рассмотрим порядок расчёта магнитной цепи для случая, когда обмотка расположена на первом стержне, а зазор – на втором. Магнитная цепь содержит три ветви и два узла. Вторая ветвь имеет два разнородных участка: магнитопровод длиной l_2 и воздушный зазор δ . Схема замещения магнитной цепи представлена на рис. 7.3.

Рис. 7.3

Составим систему уравнений по законам Кирхгофа для магнитной цепи:

$$\Phi_{1} - \Phi_{2} - \Phi_{3} = 0,$$

$$U_{M1} + U_{M2} + U_{MB} = Iw,$$

$$U_{M2} + U_{MB} - U_{M3} = 0.$$
(7.1)

2.1. Расчет магнитной цепи по заданной МДС (прямая задача)

Задача решается графически путем построения и суммирования соответствующих вебер-амперных характеристик участков цепи в соответствии с системой уравнений (7.1).

Вебер-амперные характеристики стальных участков $\Phi_k(U_{Mk})$ получаем, используя кривую намагничивания B(H) (табл. 7.2) и учитывая, что $\Phi_k = B \cdot S_k$, $U_{Mk} = H \cdot l_k$, где k – номер ветви. Соответствующие характеристики приведены на рис. 7.4.

Воздушный зазор является линейным участком магнитной цепи и его вебер-амперная характеристика $\Phi_{\rm B}(U_{\rm MB})$ представляет собой прямую, проходящую через начало координат. Вторую точку характеристики получаем при произвольном значении индукции *B*, учитывая, что $\Phi_{\rm B} = \Phi_2 = B \cdot S_2$, $U_{\rm MB} = H_{\rm B} \cdot \delta = \frac{B \cdot \delta}{\mu_o}$, где

 $\mu_0 = 4\pi \cdot 10^{-7} \ \Gamma$ н/м – магнитная постоянная.

Элементы $R_{\rm M2}$ и $R_{\rm MB}$ магнитной цепи включены последовательно (см рис.7.3), поэтому сложением абсцисс кривых $\Phi_{\rm B}(U_{\rm MB})$ и $\Phi_2(U_{\rm M2})$ получаем вебер-амперную характеристику второй ветви магнитной цепи $\Phi_2(U_{\rm M3})$.

Магнитное напряжение $U_{\rm M3}$ одинаково для второй и третьей ветви. Поэтому, складывая в соответствии с первым уравнением системы (7.1) ординаты характеристик $\Phi_2(U_{\rm M3})$ и $\Phi_3(U_{\rm M3})$, получаем кривую $\Phi_1(U_{\rm M3})$.

Для выполнения второго уравнения системы (7.1) строим зависимость $\Phi_1(I_W-U_{M1})$. Точка *К* пересечения кривых $\Phi_1(U_{M3})$ и $\Phi_1(I_W-U_{M1})$ дает искомые значения магнитного потока Φ_1 и магнитного напряжения U_{M3} , поскольку только в ней удовлетворяется система уравнений (7.1). По найденному значению U_{M3} из графиков рис. 7.4 определяем значения Φ_2 , Φ_3 , U_{M2} и U_{MB} .

По результатам расчета следует заполнить табл. 7.3 и сделать выводы о рациональности или нерациональности геометрических размеров магнитопровода.

-	-				Та	блица '	7.3
Участок цепи	Φ	В	Н	$\mu_a = B/H$	$\mu_r = \mu_a / \mu_o$	R _M	-
	Вб	Тл	А/м	Гн/м	_	Гн ⁻¹	-
1							-
 Возд. зазор							

В таблице μ_a , μ_r – абсолютная и относительная магнитная проницаемость участка магнитопровода, $R_{\rm M} = \frac{l}{\mu_a \cdot S}$ – магнитное со-

противление.

Исходя из найденных значений $R_{\rm Mk}$ рассчитаем по закону Ома для магнитных цепей магнитный поток $\Phi_1 = Iw / R_{\rm M \ 3KB}$ и сравним его с ранее полученным.

2.2. Расчёт магнитной цепи по заданному потоку (обратная задача).

Для проверки правильности полученных результатов следует решить обратную задачу: считая заданным один из магнитных потоков, рассчитать требуемую магнитодвижущую силу *Iw*. Целесообразно задаться значением магнитного потока в воздушном зазоре $\Phi_2=\Phi_{\rm B}$. Индукция в стальном участке и в воздушном зазоре второй ветви $B_2=\Phi_2/S_2$. По кривой намагничивания (табл.7.2) находим значение H_2 , соответствующее B_2 , и определяем $U_{\rm M2}=H_2$ l_2 . Далее вычисляем $U_{\rm M3}=U_{\rm M6}+U_{\rm M2}=B_2\cdot\delta/\mu_0+U_{\rm M2}$ и $H_3=U_{\rm M3}/l_3$. По кривой B(H) определяем B_3 и далее $\Phi_3=B_3\cdot S_3$. Поток в первой ветви $\Phi_1=\Phi_2+\Phi_3$, индукция $B_1=\Phi_1/S_1$. По кривой B(H) определяем H_1 и затем $U_{\rm M1}=H_1l_1$. Наконец, определяем магнитодвижущую силу обмотки $Iw=U_{\rm M1}+U_{\rm M3}$. Полученный результат не должен отличаться от исходного значения MДC более чем на 5%.

3. Статическая индуктивность катушки определяется по формуле

$$L_{\rm ct} = \frac{w\Phi}{I},$$

где Φ – значение магнитного потока в ветви, на которой размещена обмотка; I – ток в обмотке. В рассматриваемом примере $\Phi = \Phi_1$.

Задание 8

РАСЧЕТ ОСНОВНЫХ ПАРАМЕТРОВ И ХАРАКТЕРИСТИК ТРЕХФАЗНОГО АСИНХРОННОГО ДВИГАТЕЛЯ

Постановка задачи

Паспортные номинальные данные двигателей приведены в табл. 8.1; в табл. 8.2 указаны номинальные напряжения питания двигателей при различных схемах включения (частота питания – стандартная промышленная частота $f = 50 \Gamma$ ц).

В табл. 8.3 заданы относительные изменения момента нагрузки на валу двигателя ($\Delta M / M_{HOM}$) и напряжения питания ($\Delta U / U_{HOM}$).

Таблица 8.1

								1	aonni	ια 0.1
	Тип	P_{HOM} ,	При но	минали	ьной	$M_{\rm max}/$	$M_{\rm n}$	$M_{\rm min}/$	$I_{\rm n}/I_{\rm hom}$	<i>J</i> ,
No	двигателя	кВт	на	грузке		M_{hom}	$M_{\rm hom}$	M_{hom}		$K\Gamma \cdot M^2$
п/п			n.	n.	cos @					
			об/мин	%	•••• •					
		2		~		_	0	0	10	11
<u> </u>	2	3	4	5	6	1	8	9	10	11
1	4AA50A4Y3	0,06	1380	50,0	0,60	2,2	2,0	1,7	2,5	0,29.10
2	4AA50B4Y3	0,09	1370	55,0	0,60	2,2	2,0	1,7	2,5	0,325.10-4
3	4AA50B2Y3	0,12	2710	63,0	0,70	2,2	2,0	1,8	4,0	$0,268 \cdot 10^{-4}$
4	4AA56A2Y3	0,18	2800	66,0	0,76	2,2	2,0	1,5	4,0	$4,15\cdot10^{-4}$
5	4AA56B2Y3	0,25	2770	68,0	0,77	2,2	2,0	1,5	4,0	4,65.10-4
6	4АА632У3	0,37	2750	70,0	0,86	2,2	2,0	1,5	4,5	7,63.10-4
7	4АА63В2У3	0,55	2740	73,0	0,86	2,2	2,0	1,5	4,5	9.10-4
8	4А71А2У3	0,75	2840	77,0	0,87	2,2	2,0	1,5	5,5	9,75.10-4
9	4А71В2У3	1,10	2810	77,5	0,87	2,2	2,0	1,5	5,5	$10,5.10^{-4}$
10	4А80А2У3	1,50	2850	81,0	0,85	2,6	2,1	1,4	6,5	$18,3.10^{-4}$
11	4А80В2У3	2,20	2850	83,0	0,87	2,6	2,1	1,4	6,5	$21,3.10^{-4}$
12	4A90L2У3	3,0	2840	84,5	0,88	2,5	2,1	1,6	6,5	$35,3.10^{-4}$
13	4A100S2Y3	4,0	2880	86,5	0,89	2,5	2,0	1,6	7,5	59,3·10 ⁻⁴
14	4A100L2Y3	5,5	2880	87,5	0,91	2,5	2,0	1,6	7,5	$75 \cdot 10^{-4}$
15	4АА56А4У3	0,12	1375	63,0	0,66	2,2	2,1	1,5	3,5	$7,0.10^{-4}$
16	4АА56В4У3	0,18	1365	64,0	0,64	2,2	2,1	1,5	3,5	$7,88 \cdot 10^{-4}$
17	4АА63А4У3	0,25	1380	68,0	0,65	2,2	2,0	1,5	4,0	$12,4.10^{-4}$
18	4АА63В4У3	0,37	1365	68,0	0,69	2,2	2,0	1,5	4,0	13·10 ⁻⁴
19	4A71A4Y3	0,55	1390	70,5	0,70	2,2	2,0	1,8	4,5	$13,8.10^{-4}$
20	4A71B4Y3	0,75	1390	72,0	0,73	2,2	2,0	1,8	4,5	$14, 3.10^{-4}$
21	4A80A4Y3	1,10	1420	75,0	0,81	2,2	2,0	1,6	5,0	$32, 3 \cdot 10^{-4}$
22	4A80B4Y3	1,50	1415	77,0	0,83	2,2	2,0	1,6	5,0	33,3.10-4
23	4A90L4Y3	2,20	1425	80,0	0,83	2,4	2,1	1,6	6,0	$56 \cdot 10^{-4}$
24	4A100S4Y3	3,0	1435	82,0	0,83	2,4	2,0	1,6	6,0	$86, 8 \cdot 10^{-4}$
25	4A100L4Y3	4,0	1430	84,0	0,84	2,4	2,0	1,6	6,0	$1.13 \cdot 10^{-2}$
26	4А132М8У3	5,5	720	83,0	0,74	2,6	1,9	1,4	5,5	5,75.10-2
27	4A160S8Y3	7,50	730	86.0	0,75	2,2	1.4	1.0	6,0	$13.8 \cdot 10^{-2}$
28	4A160M8Y3	11.0	730	87.0	0.75	2.2	1.4	1.0	6.0	18.10^{-2}
29	4A180M8V3	15.0	730	87.0	0.82	2.0	1.2	1.0	6.0	$25 \cdot 10^{-2}$
30	4A200M8V3	18.5	735	88.5	0.84	2.2	1.2	1.0	5.5	40.10^{-2}
31	4A200L8V3	22.0	730	88.5	0.84	2.0	1.2	1.0	5.5	$45.3 \cdot 10^{-2}$
32	4A225M8V3	30.0	735	90.0	0.81	2.1	1.3	1.0	6.0	$73.8 \cdot 10^{-2}$
33	4A250S8V3	37.0	735	90.0	0.83	2.0	1.2	1.0	6.0	1.16
34	4A250M8V3	45.0	740	91.0	0,84	2.0	1.2	1.0	6.0	1,36
35	4A280S8Y3	55.0	735	92.0	0,84	2.0	1.2	1.0	5.5	3,18
36	4A280M8Y3	75,0	735	92,5	0,85	2,0	1,2	1,0	5,5	4,13
37	4A315S8Y3	90,0	740	93,0	0,85	2,3	1,2	0,9	6,5	4,93
38	4A315M8Y3	110,0	740	93,0	0,85	2,3	1,2	0,9	6,5	5,85

0	~	0
$()_{V \cap U \cup U \cup U \cup U}$	mahn	x
$() \cap () \cap () \cap () \cap ()$	IIIIIII.	· · · ·

	Окончание табл. 8.1										
1	2	3	4	5	6	7	8	9	10	11	
39	4A355S8Y3	132,0	740	93,5	0,85	2,2	1,2	0,9	6,5	9,05	
40	4А355М8У3	160,0	740	93,5	0,85	2,2	1,2	0,9	6,5	10,2	
41	4A250S10У3	30,0	590	88,0	0,81	1,9	1,2	1,0	6,0	1,36	
42	4А250М10У3	37,0	590	89,0	0,81	1,9	1,2	1,0	6,0	1,61	
43	4A280S10У3	37,0	590	91,0	0,78	1,8	1,0	1,0	6,0	3,6	
44	4А280М10У3	45,0	590	91,5	0,78	1,8	1,0	1,0	6,0	3,78	
45	4А315S10У3	55,0	590	92,0	0,79	1,8	1,0	0,9	6,0	5,25	
46	4A315M10Y3	75,0	590	92,0	0,80	1,8	1,0	0,9	6,0	6,18	
47	4А355S10У3	90,0	590	92,5	0,83	1,8	1,0	0,9	6,0	9,33	
48	4A355M10У3	110,0	590	93,0	0,83	1,8	1,0	0,9	6,0	10,9	
49	4А315S12У3	45,0	490	90,5	0,75	1,8	1,0	0,9	6,0	5,25	
50	4A315M12Y3	55,0	490	91,0	0,75	1,8	1,0	0,9	6,0	6,18	
51	4А355S12У3	75,0	490	91,5	0,76	1,8	1,0	0,9	6,0	9,33	
52	4A355M12Y3	90,0	490	92,0	0,76	1,8	1,0	0,9	6,0	10,9	
53	4А225М6У3	37,0	980	91,0	0,89	2,3	1,2	1,0	6,5	$73,8.10^{-2}$	
54	4A250S6Y3	45,0	985	91,5	0,89	2,1	1,2	1,0	6,5	1,16	
55	4А250М6У3	55,0	985	91,5	0,89	2,1	1,2	1,0	6,5	1,26	
56	4A280S6Y3	75,0	985	92,0	0,89	2,2	1,4	1,2	5,5	2,93	
57	4А280М6У3	90,0	985	92,5	0,89	2,2	1,4	1,2	5,5	3,38	
58	4А315S6У3	110,0	985	93,0	0,90	2,2	1,4	0,9	6,5	4,0	
59	4А315М6У3	132,0	985	93,0	0,90	2,2	1,4	0,9	6,5	4,5	
60	4А355S6У3	160,0	985	93,5	0,90	2,2	1,4	0,9	6,5	7,33	
61	4А355М6У3	200,0	985	94,0	0,90	2,2	1,4	0,9	6,5	8,8	
62	4A250S2Y3	75,0	2960	91,0	0,89	2,5	1,2	1,0	7,5	$46,5\cdot10^{-2}$	
63	4А250М2У3	90,0	2960	92,0	0,90	2,5	1,2	1,0	7,5	$52 \cdot 10^{-2}$	
64	4A280S2Y3	110,0	2970	91,0	0,89	2,2	1,2	1,0	7,0	1,09	
65	4А280М2У3	132,0	2970	91,5	0,89	2,2	1,2	1,0	7,0	1,19	
66	4A315S2Y3	160,0	2970	92,0	0,90	2,2	1,2	0,9	6,5	1,4	
67	4А315М2У3	200,0	2970	92,0	0,90	2,2	1,2	0,9	7,0	1,63	
68	4A355S2Y3	250,0	2970	92,5	0,90	1,9	1,0	0,9	7,0	2,85	
69	4А355М2У3	315,0	2970	93,0	0,91	1,9	1,0	0,9	7,0	3,23	

			Таблица 8.2
Номинальные мощности	двигателей, кВт	От 0,06	От 15,00 до 400
		до 11,00	
Номинальное напряже- ние питания,	U_{π} при включении по схеме «тре- угольник»	220	380
В	U _л при включении по схеме «звезда»	380	660

								Таб	лица	8.3
Вариант	1	2	3	4	5	6	7	8	9	10
$\Delta M/M$ H%	70	15	60	20	40	25	50	30	35	40
$\Delta U/U_{ m H}$ %	2	10	1,5	15	2,5	12,5	5	3	7,5	4
70			-	-	-		-		•	

Вариант задания определяется двумя числами: первое – номер строки в табл. 8.1 (определяет тип двигателя, в соответствии с мощностью которого в табл. 8.2 заданы параметры питания), второе – номер столбца в табл. 8.3, в соответствии с которым надлежит рассмотреть изменения момента нагрузки и питающего напряжения (как в сторону увеличения, так и в сторону уменьшения).

Содержание задания

1. Рассчитать номинальные параметры двигателя, не указанные в паспортных данных, а именно: номинальное скольжение $s_{\text{ном}}$, частоту тока в роторе f_{P} , номинальный момент $M_{\text{ном}}$, номинальный фазный ток $I_{\text{ном}}$ и соответствующие ему значения линейных токов для случаев включения двигателя по схеме «треугольник» и по схеме «звезда».

2. Определить максимальный M_{max} и пусковой $M_{\text{п}}$ моменты, критическое скольжение $s_{\text{кр}}$ и соответствующую ему критическую скорость вращения $n_{\text{кр}}$, абсолютный $\Delta n = n_0 - n_{\text{кр}}$ и относительный $\Delta n/n_0$ запасы устойчивости по скорости.

3. Рассчитать параметры двигателя для неноминальных режимов, а именно:

3.1. Определить скольжение s, скорость вращения n, мощность на валу P в абсолютных и относительных (по отношению к номинальным) единицах при заданных изменениях момента нагрузки и номинальном напряжении питания.

3.2. Определить максимальный $M_{\text{мах}}$ и пусковой $M_{\text{п}}$ моменты, перегрузочную способность $M_{\text{max}} / M_{\text{ном}}$, скольжение *s*, частоту вращения *n*, мощность на валу при заданных изменениях напряжения питания и номинальном моменте нагрузки.

Все расчёты должны сопровождаться пояснениями, отражающими физические процессы, происходящие в двигателе.

4. По результатам расчётов построить семейства механических характеристик n(M) и M(s) для номинального и для измененных согласно заданию напряжений питания.

5. Сформулировать краткие выводы по полученным результатам.
Методические указания

1. Расчет дополнительных номинальных параметров двигателя.

Номинальное скольжение рассчитываем по формуле

$$s = \frac{n_0 - n}{n_0} \quad , \tag{8.1}$$

предварительно определив частоту вращения магнитного поля n_0 . Поскольку асинхронные двигатели в номинальном режиме работают при малых скольжениях, выбираем n_0 как ближайшее большее по сравнению с заданным $n_{\text{ном}}$ из ряда возможных значений, получаемых из формулы

$$n_0 = 60 f / p$$
 (8.2)

при подстановке частоты питания питающего напряжения и целых чисел пар полюсов *p*.

По полученному $s_{\text{ном}}$ определяем частоту тока в роторе f_{p} при номинальной частоте вращения $n_{\text{ном}}$:

$$f_p = s \cdot f . \tag{8.3}$$

Используя номинальную мощность машины, указанную в паспортных данных (для двигателя – это механическая мощность P_2 на валу), по формуле

$$M = 9,55 \cdot \frac{P_2}{n} \tag{8.4}$$

определяем момент $M_{\text{ном}}$ на валу двигателя, а по формуле

$$\eta = \frac{P_2}{P_1} 100\% \tag{8.5}$$

электрическую мощность *P*₁, потребляемую двигателем в номинальном режиме.

Активную мощность, потребляемую симметричной трехфазной нагрузкой (двигатель является нагрузкой симметричной) определяем по формуле

$$P = 3U_{\phi}I_{\phi}\cos\phi = \sqrt{3}U_{\Pi}I_{\Pi}\cos\phi, \qquad (8.6)$$

откуда находим значение фазного $I_{\phi \text{ ном}}$ и линейного $I_{\pi \text{ ном}}$ тока двигателя при работе в номинальном режиме. Линейный ток для схемы «звезда» равен фазному, а для схемы «треугольник» отличается в $\sqrt{3}$ раз.

2. Определение максимального и пускового моментов и критического скольжения.

Паспортные данные позволяют определить значения максимального и пускового моментов M_{max} и M_{π} по значению номинального момента (см. табл. 8.1).

Значение критического скольжения *s*_{кр} определяем по упрощённой формуле Клосса

$$M = \frac{2M_{\max}}{s / s_{\kappa p} + s_{\kappa p} / s},$$
(8.7)

при подстановке в неё известного значения момента $M_{\text{ном}}$ и соответствующего ему значения скольжения $s_{\text{ном}}$. Относительно $s_{\text{кр}}$ формула (8.7) обращается в квадратное уравнение с двумя решениями. Выбор требуемого решения производится на основании сравнения $s_{\text{кр}}$ с найденным ранее $s_{\text{ном}}$.

3. Расчёт параметров при неноминальных режимах работы двигателя.

3.1. Для расчёта параметров при неноминальных значениях нагрузочного момента необходимо, пользуясь (8.7), определить скольжение при заданном изменении нагрузки. Подставляя найденное скольжение в (8.1), определяем скорость вращения *n*. Мощность в неноминальном режиме рассчитывается по формуле (8.4).

3.2. При расчёте параметров двигателя при напряжениях питания, отличных от номинального, следует учесть, что момент на валу (в том числе максимальный момент $M_{\rm max}$) пропорционален квадрату напряжения, а критическое скольжение зависит только от конструктивных параметров двигателя и частоты питания и, следовательно, инвариантно к напряжению. Поэтому необходимо определить новое значение максимального момента $M_{\rm max}$ и, пользуясь (8.7) и (8.1), рассчитать требуемые параметры режима.

4. Построение графиков.

Механические характеристики, соответствующие номинальному напряжению питания, строим по шести точкам: точка идеального холостого хода, точка номинальной нагрузки, две точки с измененным моментом нагрузки, точка максимального момента, точка пуска двигателя.

Характеристики при измененном напряжении питания строим

по четырем точкам (указанные выше точки кроме точек с измененной нагрузкой).

Оси графиков должны быть оцифрованы, соответствующие точки выделены.

Задание 9

РАСЧЁТ ОСНОВНЫХ ПАРАМЕТРОВ И ХАРАКТЕРИСТИК ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА С ПАРАЛЛЕЛЬНЫМ ВОЗБУЖДЕНИЕМ

Постановка задачи

Вариант задания задается двумя числами: первое определяет номер строки в табл. 9.1, второе – номер столбца в табл. 9.2.

В табл. 9.1 приведены паспортные данные двигателей постоянного тока серии "П". Номинальное напряжение питания двигателей этой серии 220 В.

					Сопроти	вление при
N⁰	Тип двига-	P_2 ,	<i>n</i> ,	η,	2	0° C
п/п	теля	кВт	об./мин	%	<i>R</i> _{я.}	R _B
						Ом
1	2	3	4	5	6	7
1	П91	19	600	81,5	0,198	44
2	П92	25	600	83,5	0,111	48,4
3	П102	42	600	85,5	0,0171	32,5
4	П111	55	600	87,0	0,036	28
5	П112	70	600	88,0	0,0262	24
6	П72	10	750	78,5	0,357	92,5
7	П81	14	750	80,5	0,244	92
8	П82	17	750	83,0	0,157	73,3
9	П91	25	750	83,5	0,102	44
10	П92	32	750	86,0	0,020	31,8
11	П52	4,5	1000	81,0	0,632	184
12	П61	6	1000	83,5	0,494	158
13	П62	8	1000	85,0	0,328	136
14	П71	10	1000	79,5	0,300	85
15	П72	12,5	1000	81,0	0,237	108
16	П31	1,5	1500	78,5	2,45	470
17	П32	2,2	1500	83,5	1,205	358
18	П41	3,2	1500	79,0	1,03	18

Таблица 9.1

OKON unuc muon. $f.1$	- 0	жончание	табл.	9.1	
-----------------------	-----	----------	-------	-----	--

1	2	3	4	5	6	7
19	П42	4,5	1500	80,5	0,78	228
20	П51	6	1500	82,0	0,472	132
21	П21	1,5	3000	76,0	1,99	600
22	П22	2,2	3000	80,0	1,03	712
23	П31	3,2	3000	83,0	0,642	285
24	П32	4,5	3000	84,0	0,352	270
25	П41	6	3000	82,5	0,36	280
26	П41М	8	2800	82,6	0,21	200
27	П52М	20	3000	87,4	0,073	95
28	П71М	39	3000	85,6	0,045	61
29	ПМ1010М5	60	1000	86,9	0,029	38
30	ПМ1120М5	125	1000	88,9	0,010	24

В табл. 9.2 заданы относительное изменение момента нагрузки на валу машины, величина сопротивления $R_{\rm A}$, вводимого последовательно с обмоткой возбуждения для регулирования частоты вращения (в процентах от сопротивления $R_{\rm B}$), и относительное изменение напряжения питающей сети.

При выполнении расчетов принимаются следующие допущения: магнитопровод машины не насыщен, реакция якоря скомпенсирована, изменением сопротивлений обмоток вследствие нагрева можно пренебречь.

*										Т	аблиі	1a 9.2
Вариант	1	2	3	4	5	6	7	8	9	10	11	12
$\Delta M/M_{\rm H}$, %	+10	+15	+20	+25	+30	+35	+40	+45	+50	+55	+12,5	+22,5
$R_{\rm II}/R_{\rm map}$, %	5	10	15	4	8	12	7,5	12,5	10	20	25	22,5
$\Delta U/U_{ m H}$, %	+5	-10	+10	-15	-5	+7,5	-7,5	-12,5	+15	+12,5	+20	-20

Содержание задания

1. Рассчитать параметры номинального режима, не указанные в паспортных данных, а именно: мощность, потребляемую от сети, номинальный ток якоря, номинальный момент на валу, потери в номинальном режиме.

2. Определить «противо-ЭДС » в номинальном режиме и частоту вращения n_0 идеального холостого хода.

3. Рассчитать сопротивления пускового реостата исходя из кратности пускового тока $I_{g \, пуск'}/I_{g \, HOM} = 5$. Пусковой реостат принять двухступенчатым: $R_{\Pi} = R_{\Pi 1} + R_{\Pi 2}$, считая, что первая ступень ($R_{\Pi 1}$) будет выведена при достижении якорным током значения $I_{g1} = 2,5I_{g \, HOM}$. 4. Рассчитать следующие параметры работы двигателя в неноминальных режимах: частоту вращения, ток в якорной обмотке, «противо-ЭДС», мощность на валу, мощность, потребляемую от сети, мощность потерь, КПД двигателя.

Рассмотреть режимы:

4.1. Работа двигателя при номинальном токе возбуждения и неноминальном (измененном в соответствии с табл. 9.2) моменте нагрузки.

4.2. Работа двигателя на номинальную нагрузку при измененном в соответствии с табл. 9.2 токе возбуждения (за счет введения добавочного сопротивления $R_{\rm d}$ последовательно с обмоткой возбуждения).

4.3. Работа двигателя на номинальную нагрузку при отсутствии сопротивления $R_{\rm A}$ в цепи возбуждения при заданном (в соответствии с табл. 9.2) изменении питающего напряжения.

Сравнить потери и КПД для указанных режимов со значениями, полученными для номинального режима.

Все расчёты должны сопровождаться пояснениями, отражающими физические процессы, происходящие в двигателе.

Кроме расчетной части, курсовая работа должна содержать:

— электрическую схему двигателя параллельного возбуждения с пусковым реостатом и регулировочным сопротивлением $R_{\rm d}$ в цепи возбуждения;

– скоростные $n(I_s)$ и механические n(M) характеристики: естественные, искусственные при введении $R_{\rm d}$, искусственные при изменении напряжения питания. На характеристиках должны быть отмечены рассчитанные точки;

- краткие выводы по полученным результатам.

Методические указания

1. Расчёт параметров номинального режима, не указанных в паспортных данных.

Номинальная мощность машины – это её выходная, т.е. полезная, мощность (для двигателя – это механическая мощность на валу). Мощность, потребляемую двигателем из сети, определяем из формулы

$$\eta = \frac{P_2}{P_1} 100\% \,. \tag{9.1}$$

По этой мощности и по напряжению питания находим полный ток, потребляемый двигателем. Вычитая из него ток, параллельный обмотки возбуждения, $I_{\text{возб ном}} = U_{\text{ном}}/R_{\text{в}}$, получаем номинальный якорный ток $I_{\text{я ном}}$.

Момент на валу в номинальном режиме $M_{\text{ном.}}$ рассчитываем по номинальной мощности и номинальной частоте вращения:

$$M = 9,55 \cdot \frac{P}{n} . \tag{9.2}$$

Мощность потерь в двигателе определяется как

$$P_{\text{потерь}} = P_1 - P_2 = P_{\text{перем}} + P_{\text{пост}},$$
 (9.3)

где $P_{\text{перем}}$ – переменные потери, представляющие собой мощность на нагрев элементов якорной цепи: $P_{\text{нагр. } \pi} = I_{\pi}^2 R_{\pi \mu}$, $P_{\text{пост}}$ – постоянные потери (мощность на нагрев обмотки возбуждения: $P_{\text{нагр. возб.}} = I_{\text{возб.}}^2 R_{\text{возб.}}$ и прочие потери: вентиляционные, трение и т.п.).

2. Определение скорости идеального холостого хода и величины "противо-ЭДС".

Напряжение, приложенное к якорю, уравновешивается «противо-ЭДС», возникающей при вращении якоря в магнитном поле:

$$E = C_e \Phi n , \qquad (9.4)$$

и падением напряжения на сопротивлении якорной цепи (при отсутствии других сопротивлений это сопротивление якорной обмотки):

$$U = E + I_{\rm g} R_{\rm g.u.}. \tag{9.5}$$

Находя по (9.5) ЭДС *E*, соответствующую номинальному режиму, определяем по (9.4) численное значение произведения $C_e \times \Phi$. При идеальном холостом ходе $I_s = 0$ и $n_o = U/(C_e \times \Phi)$.

3. Расчёт сопротивлений пускового реостата.

В момент пуска двигателя частота вращения равна нулю и $I_{s \, пуск} = U/R_{s.u.}$ Подставляя допустимое при заданной кратности пускового тока значение I_s , определяем необходимое сопротивление якорной цепи. Таким образом, $R_n = U/I_{s, non} - R_s$.

При таком сопротивлении по (9.4) и (9.5) определяем частоту вращения n_1 , при которой якорный ток снизится до $I_{\pi 1} = 2,5I_{\pi,\text{ном}}$. На этой скорости часть сопротивления пускового реостата $R_{\pi 1}$ выводится; сопротивление оставшейся части $R_{\pi 2}$ определяем из (9.4)

и (9.5) при найденном *n*₁ и прежним условии ограничения якорного тока.

Примечание. Для некоторых вариантов может оказаться, что вторая ступень пускового реостата не потребуется.

4. Расчёт параметров работы двигателя в неноминальных режимах.

4.1. Работа при номинальном токе возбуждения и неноминальном моменте нагрузки.

При изменении момента нагрузки изменяется ток в якорной обмотке в соответствии с формулой

$$M = C_{\rm M} \times \Phi I_{\rm g} \,. \tag{9.6}$$

Значение произведения $C_{\rm M}$ ·Ф, определяем из (9.6), подставляя известные номинальные данные.

Скорость вращения определяем из совместного решения (9.4) и (9.5):

$$n = \frac{U}{C_e \Phi} - \frac{R_g}{C_e \Phi} I_g \,. \tag{9.7}$$

Новое значение мощности на валу находим по (9.2), а мощность, потребляемая от сети, – произведением напряжения и полного тока, являющегося суммой изменившегося якорного тока и тока возбуждения. КПД и потери рассчитываем аналогично предыдущему с использованием (9.1) и (9.3).

4.2. Работа при номинальной нагрузке и измененном токе возбуждения.

В случае изменения возбуждения (посредством введения $R_{\rm A}$ последовательно с обмоткой возбуждения) следует подсчитать по закону Ома новое значение тока возбуждения. Поскольку в задании принято допущение, что магнитная цепь машины не насыщена, магнитный поток Ф пропорционален току возбуждения. Это означает, что пропорционально току возбуждения изменяются и определённые ранее величины $C_e * \Phi$ и $C_{\rm M} * \Phi$.

4.3. Работа двигателя при измененном напряжении питания.

При параллельном возбуждении изменение питающего напряжения повлияет не только на якорную цепь – значение U в формуле (9.5), но, в соответствии с законом Ома, изменится и ток $I_{возб}$. Пропорционально $I_{возб}$ изменится и величина магнитного потока возбуждения Ф. С учётом сказанного расчёт далее проводим по приведенным выше формулам.

Библиографический список

1. *Прянишников, В. А.* Электротехника и ТОЭ в примерах и задачах: практическое пособие / В.В.Прянишников, Е. А. Петров, Ю. М. Осипов. СПб.: КОРОНА принт, 2001.

2. *Прянишников, В. А.* Теоретические основы электротехники: Курс лекций/ В.А.Прянишников. СПб.: КОРОНА принт, 2000.

3. *Татур,Т. А.* Основы теории электрических цепей (справочное пособие). М.: Высшая школа, 1980.

4. *Херхагер, М.* MathCAD 2000: Полное руководство: Пер. с нем. / М. Херхагер, М., Х. Партолль. Киев: Изд. группа BHV, 2000.

СОДЕРЖАНИЕ

Правила оформления домашнего задания и курсовой работы	
Задание 1. Расчет установившегося процесса в электрической цепи	
синусоидального тока с одним источником ЭДС4	
Задание 2. Расчет установившегося процесса в электрической цепи	
синусоидального тока с двумя источниками ЭДС13	
Задание 3. Расчёт цепи постоянного тока различными методами	
Задание 4. Расчет реактивных электрических фильтров	
Задание 5. Расчет переходного процесса в электрической цепи	
первого порядка	
Задание 6. Расчет переходного процесса в электрической цепи	
второго порядка 48	
Задание 7. Расчет нелинейных цепей	
Задание 8. Расчет основных параметров и характеристик трехфазного	
асинхронного двигателя	
Задание 9. Расчёт основных параметров и характеристик двигателя	
постоянного тока с параллельным возбуждением74	
Библиографический список	

Электротехника: домашние и курсовые задания

Редактор Г. М. Звягина Корректор Л.А. Петрова Подписано в печать 25.12.2007. Формат 60×84/16. Бумага документная. Печать трафаретная. Усл. печ. л. 4,65. Тираж 400 экз. Заказ № 242 Балтийский государственный технический университет Типография БГТУ 190005, С.-Петербург, 1-я Красноармейская ул., д.1

Таблица 6.1

Ba-	Условия														
ри-	Элементы схемы										Положение ключей				
ант	а	b	с	d	f	q	m	n	К1	К2	К3	К ₄	К5		
1	0,5 Гн	600 Ом	-	10 ³ Ом	-	10 мкФ	-	-	3	-	-	-	-		
2	0,3 Гн	120 Ом	-	500 Ом	-	8 мкФ		-	-	-	3	-	-		
3	0,1 Гн	350 Ом	-	600 Ом	-	6 мкФ	_	-	-	-	-	3	-		
4	0,08 Гн	40 Ом	160 Ом	200 Ом	-	4 мкФ	-	-	-	3	-	-	-		
5	0,03 Гн	500 Ом	-	0,8 мкФ	-	800 Ом	-	700 Ом	-	-	-	-	3		
6	0,02 Гн	-	100 Ом	500 Ом	-	0,5 мкФ	-	-	-	р	-	-	-		
7	0,09 Гн	300 Ом	-	5 мкФ	-	300 Ом	-	600 Ом	-	-	-	-	Р		
8	9 мкФ	500 Ом	-	700 Ом	-	0,4 Гн	-	-	3	-	-	-	-		
9	0,6 мкФ	-	-	600 Ом	-	0,01 Гн	450 Ом	-	3	-	-	-	-		
10	300 Ом	-	-	2 мкФ	-	0,06 Гн	70 Ом	-	3	-	-	-	-		
11	700 Ом	-	-	0,7 мкФ	-	0,02 Гн	400 Ом	-	-	-	3	-	-		
12	400 Ом	-	-	0,9 мкФ		0,04 Гн	80 Ом	-	-	-	-	3	-		
13	600 Ом	-	300 Ом	0,6 мкФ	-	0,01 Гн	300 Ом	-	-	3	-	-	-		
14	500 Ом	-	-	1 мкФ	-	0,05 Гн	140 Ом	360 Ом	-	-	-	-	3		
15	250 Ом	-	250 Ом	8 мкФ	-	0,3 Гн	100 Ом	-	-	р	-	-	-		
16	10 ³ Ом	-	-	10 мкФ	-	0,5 Гн	200 Ом	500 Ом	-	-	-	-	Р		
17	0,09 Гн	-	-	900 Ом	-	5 мкФ	350 Ом	-	3	-	-	-	-		
18	0,09 Гн	-	-	200 Ом	-	4 мкФ	30 Ом	-	-	-	3	-	-		
19	0,03 Гн	-	-	800 Ом	-	0,8 мкФ	650 Ом	-	-	-	-	3	-		
20	0,02 Гн	-	800 Ом	700 Ом	-	0,7 мкФ	550 Ом	-	-	3	-	-	-		
21	0,07 Гн	-	-	3 мкФ	80 Ом	400 Ом	-	600 Ом	-	-	-	-	3		
22	0,2Гн	-	-	7 мкФ	400 Ом	200 Ом	-	600 Ом	-	-	-	-	Р		
23	500 Ом	-	-	0,02 Гн	-	100 Ом	0,5 мкФ	-	3	-	-	-	-		
24	700 Ом	-	-	0,4 Гн	-	750 Ом	9 мкФ	-	-	-	3	-	-		
25	300 Ом	-	250 Ом	0,06 Гн	-	50 Ом	2 мкФ	-	-	3	-	-	-		
26	400 Ом	-	400 Ом	0,2 Гн	-	500 Ом	7 мкФ	-	-	р	-	-	-		
27	400 Ом	-	-	0,9 мкФ	100 Ом	0,04 Гн	-	400 Ом	-	-	-	-	3		
28	2 мкФ	-	2 мкФ	500 Ом	-	0,05 Гн	120 Ом	-	-	3	-	-	-		
29	6 мкФ	-	3 мкФ	600 Ом	-	0,1 Гн	400 Ом	-	-	3	-	-	-		
30	0,02 Гн	20 Ом	100 Ом	500 Ом	-	0,5 мкФ	-	-	-	р	-	-	-		