8. Лабораторный практикум.

Приступая к выполнению лабораторного практикума, следует иметь в виду, что он выполняется в виртуальной (электронной) лаборатории, какой являются система электронного моделирования Electronics Workbench.

Программа Electronics Workbench использует стандартный интерфейс Windows, что облегчает ее использование.

Описание версии Electronics Workbench 5.12, Professional Edition можно найти в Интернете. Там же можно освоить приемы выполнения лабораторных работ. Применения этой программы хорошо изложено в пособии: А.С. Серебряков "Электротехника и электроника" - М: "Высшая шк"., 2009, 335с.

7.1 Лабораторная работа № 2

" Исследование цепи синусоидального тока с последовательным соединением активного и индуктивного сопротивлений"

Цель работы.

Экспериментальное исследование характера изменений тока, мощности и падения напряжений на участках последовательной цепи, содержащей активное и индуктивное сопротивления.

Подготовка к выполнению работы.

Для выполнения лабораторной работы необходимо установить программу Electronics Workbench 5.12- Portable – Эмулятор электрических схем, которую можно найти в Интернете по адресу: http://soft-plus.ucoz.ru/load/100-1-0-261 и бесплатно скачать на рабочий компьютер.

🚰 Electronics Wor...

После установки появляется символика программы

После запуска программы появляется окно, в котором располагается меню, инструментальная строка и строка библиотеки компонентов (Puc.1).

Ниже появляется непоименованное (Untitled) *рабочее поле*, в котором и будет строиться исследуемая схема.

Общие теоретические сведения.

Электрическая цепь переменного тока имеет три элемента: активное, индуктивное и емкостное сопротивления. В данной работе исследуется цепь с активным и индуктивным сопротивлениям, соединенными последовательно (Рис.2 а, б).

Индуктивное сопротивление представляет собой катушку (обмотку), основным параметром которой является индуктивность $L=\mu_a W^2 S/h$, где W- число витков, S- площадь поперечного сечения катушки, h- высота и μ_a – абсолютная магнитная проницаемость, характеризующая магнитные свойства среды.

Индуктивность – это коэффициент пропорциональности *между потокосцеплением* $\psi = W\Phi$, создаваемым протекающим в катушке током и *величиной этого тока* I, т.е.

$$\psi = L \bullet I$$

В системе СИ единица измерения индуктивности - генри (Гн).

Известно, что при синусоидальном напряжении и токе в электрической цепи, ток в катушке индуктивности отстает от напряжения по фазе на угол 90⁰.

В цепи с активным R и индуктивным X_{L} сопротивлениями, ток отстает от напряжения по фазе на угол $\phi < 90^{\circ}$.

Действующее значение тока, протекающего через катушку индуктивности, связано с действующим на ней значением напряжения формулой закона Ома.

$$I = \frac{U_L}{X_L} = \frac{U_L}{\omega L}$$

Величина $X_L = \omega L$; где $\omega = 2 \pi f$.

В цепях синусоидального тока с ее помощью учитывается явление самоиндукции, т.е. наведение ЭДС в проводнике при изменении магнитного поля, окружающего этот проводник. Единица измерения X_L - Ом.

При наличии синусоидального тока в цепи, показанной на рис 2. а, б,

приложенное к цепи напряжение, согласно второму закону Кирхгофа, равно векторной (геометрической) сумме падений напряжений на активном $U^2 = U_R^2 + U_L^2$. U_R и индуктивном U_L сопротивлениях, т.е.

Действующее значение напряжения определяется равенством

$$U = \sqrt{U_L^2 + U_R^2} = \sqrt{(RI)^2 + (X_LI)^2} = \sqrt{R^2 + X_L^2} = I \cdot Z$$

Отсюда можно определить действующее значение тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X_L^2}} \,.$$

Выражение $\sqrt{R^2 + X_L^2}$ - называют полным сопротивлением цепи. В такой цепи ток отстает по фазе от напряжения на угол 90°.

$$p = \operatorname{arctg} \frac{R}{R}$$

Активная мощность в цепи (Рис. 2) определяется по формуле:

$$P = R \cdot I^{2} = R \cdot \left(\frac{U}{\sqrt{R^{2} + X_{L}^{2}}}\right)^{2} = \frac{U^{2} \cdot R}{(R^{2} + X_{L}^{2})}$$

Изменение активного и индуктивного сопротивлений по разному влияют на изменение активной мощности цепи. Можно показать, что мощность максимальна, если $R = X_{L}$.

Порядок выполнения работы

Исследовать схему (Рис. 2 а, б), содержащую последовательно 1. включенные элементы R и L.

Компьютерная модель этой схемы приведена на Рис.3.

Рис. 3. Компьютерная модель схемы, содержащей R и L.

Параметры схемы для различных вариантов приведены ниже.

В модели (Рис.3.) r - это внутреннее сопротивление катушки индуктивности L.

Напряжение на входе схемы во время эксперимента автоматически поддерживается постоянным.

2. Исследовать работу схемы при постоянном сопротивлении R, изменяя величину индуктивности катушки от максимального значения до нуля (Рис.2,а). Данные записать в Таблицу 1.

Формулы для расчетов:
$$Z = \frac{U}{I}$$
; $R + r = \frac{P}{I^2}$; $Z_k = \frac{U_K}{I}$; $R = \frac{U_R}{I}$;
 $r = \frac{P}{I^2} - R$; $X_L = \sqrt{Z^2 - r^2}$; $\cos \varphi = \frac{P}{IU}$.

Таблица 1

№ п/п	Измерено					Вычислено							
	<i>I</i> , A	<i>U</i> , B	U_{κ} , B	<i>U_R</i> , B	<i>Р</i> , Вт	<i>Z</i> , Ом	<i>R</i> + <i>r</i> , Ом	<i>Z</i> _к , Ом	<i>R</i> , Ом	<i>г</i> , Ом	<i>X_L</i> , Ом	cos φ	
							eja ar						

3. Исследование при постоянных параметрах катушки индуктивности и изменении активного сопротивления цепи (Рис.1,б) от R = 0 до R = max, изменяя ток через 0,1А. Данные свести в Таблицу 2.

Формулы для вычислений те же, что были приведены ранее в п.2. Формулы для расчетов: $Z = \frac{U}{I}$; $R + r = \frac{P}{I^2}$; $Z_k = \frac{U\kappa}{I}$; $R = \frac{U_R}{I}$; $r = \frac{P}{I^2} - R$; $X_L = \sqrt{Z^2 - r^2}$; $\cos \varphi = \frac{P}{IU}$.

Примечание: Z - полное сопротивление всей электрической цепи,

Zк - полное сопротивление катушки, включающее собственное активное сопротивление r катушки.

Таблица 2

№ п/п	Измерено					Вычислено							
	<i>I</i> , A	<i>U</i> , B	<i>U</i> _к , В	<i>U_R</i> , B	<i>Р</i> , Вт	<i>Z</i> , Ом	<i>R</i> + <i>r</i> , Ом	<i>Z</i> _к , Ом	<i>R</i> , Ом	<i>г</i> , Ом	<i>X_L</i> , Ом	cos φ	
	produkt Kestropri	Provide 1	200 171		and the state	an er	energa como	in never	350 AL		\$ Dian	13 M 03.	

4. Построить в одних осях координат по данным п. 2. зависимости: *I*; U_R ; U_L ; *P*; $\cos \varphi$; $Z = f(X_L)$ и в других осях координат по данным п. 3. зависимости: *I*; U_R ; U_L ; *P*; $\cos \varphi$; Z=f(R).

5. Сделать выводы по проделанной работе.

Контрольные вопросы

1. Записать выражение для закона Ома для последовательного соединения элементов R и L.

a) $I = \frac{P}{U}$, $Z = \sqrt{(R + X_L)^2}$, $X_L = \omega L$; 6) $I = \frac{U}{Z}$, $Z = \sqrt{R^2 + X_L^2}$, $X_L = \omega L$; b) $I = \frac{P}{U}$, $Z = \sqrt{(R^2 - X_L)^2}$, $X_L = \omega L$; Γ) $I = \frac{P}{Z}$, $Z = \sqrt{(R^2 - X_L)^2}$, $X_L = \omega L$; χ) $I = \frac{U}{P}$, $Z = \sqrt{(R - X_L)^2}$, $X_L = \omega L$. **2.** Записать выражение общего сопротивления для последовательного соединения R и L. Почему уменьшается соsф при увеличении индуктивного сопротивления?

a) $\mathbf{Z} = \mathbf{R} + \mathbf{j} X_{\mathrm{L}}, \quad Z = \sqrt{\mathbf{R}^2 + \mathbf{X}_{\mathrm{L}}^2}, \quad \cos \varphi = \frac{\mathbf{X}_{\mathrm{L}}}{\sqrt{\mathbf{R}^2 + \mathbf{X}_{\mathrm{L}}^2}};$ 6) $\mathbf{Z} = \mathbf{R} + \mathbf{j} X_{\mathrm{L}}, \quad Z = \sqrt{(\mathbf{R} + \mathbf{X}_{\mathrm{L}})^2}, \quad \cos \varphi = \frac{\mathbf{X}_{\mathrm{L}}}{\sqrt{(\mathbf{R} + \mathbf{X}_{\mathrm{L}})^2}};$ B) $\mathbf{Z} = \mathbf{R} + \mathbf{j} X_{\mathrm{L}}, \quad Z = \sqrt{\mathbf{R} + \mathbf{X}_{\mathrm{L}}^2}, \quad \cos \varphi = \frac{\mathbf{X}_{\mathrm{L}}}{\sqrt{\mathbf{R} + \mathbf{X}_{\mathrm{L}}^2}};$ $\Gamma) \mathbf{Z} = \mathbf{R} + \mathbf{j} X_{\mathrm{L}}, \quad Z = \sqrt{\mathbf{R}^2 - \mathbf{X}_{\mathrm{L}}^2}, \quad \cos \varphi = \frac{\mathbf{X}_{\mathrm{L}}}{\sqrt{\mathbf{R} - \mathbf{X}_{\mathrm{L}}^2}};$ $\mathbf{J}) \mathbf{Z} = \mathbf{R} + \mathbf{j} X_{\mathrm{L}}, \quad Z = \sqrt{(\mathbf{R} - \mathbf{X}_{\mathrm{L}})^2}, \quad \cos \varphi = \frac{\mathbf{X}_{\mathrm{L}}}{\sqrt{(\mathbf{R} - \mathbf{X}_{\mathrm{L}})^2}}.$

3. Как изменяются активная и реактивная мощности при изменении R от 0 до ∞ и L = const ?

- a) $P_a = P \cos \phi = UI. \bullet \cos \phi$ изменяется от $P_a = P = UI$ до $P_a = 0$, $P_p = P \sin \phi = UI. \bullet \sin \phi$ изменяется от $P_p = P = UI$ до P = 0;
- б) $P_a = P \sin \phi = UI. \bullet \sin \phi$ изменяется от $P_a = 0$ до $P_a = P = UI$, $P_p = P \cos \phi = UI. \bullet \cos \phi$ изменяется от $P_p = 0$ до $P = P_a = UI$;
- B) $P_a = P \cos \varphi = UI. \bullet \cos \varphi$ изменяется от $P_a = 0$ до $P_a = P = UI$, $P_p = P \sin \varphi = UI. \bullet \sin \varphi$ изменяется от $P_p = P = UI$ до P = 0;
- Г) $P_a = P \cos \phi = UI. \bullet \sin \phi$ изменяется от $P_a = P$ до $P_a = UI = 0$, $P_p = P \cos \phi = UI. \bullet \sin \phi$ изменяется от $P_p = P = UI$ до P = 0;
- д) $P_a = P \sin \phi = UI. \bullet \cos \phi$ изменяется от $P_a = P$ до $P_a = UI = 0$, $P_p = P \cos \phi = UI. \bullet \sin \phi$ изменяется от $P_p = 0$ до $P = P_a = UI$.
 - **4.** Как изменяется общее сопротивление цепи Z, активная и реактивная

составляющие тока при изменении R от 0 до ∞ . и L = const ?

a) $X_L \ge Z \le \infty$, $0 \ge Ia = Icos\phi \ge I$, $I \le I_p = Isin\phi \ge 0$;

- 6) $X_L \le Z \ge \infty$, $0 \le Ia = I\cos \phi \ge I$, $I \ge I_p = I\sin \phi \le 0$;
- B) $X_L \ge Z \ge \infty$, $0 \ge Ia = I\cos\varphi \le I$, $I \le I_p = I\sin\varphi \ge 0$;
- r) $X_L \le Z \le \infty$, $0 \le Ia = I\cos\varphi \le I$, $I \ge I_p = I\sin\varphi \ge 0$;
- $\exists J | X_L \le Z \ge \infty, \quad 0 \ge Ia = I\cos\phi \le I, \quad I \le I_p = I\sin\phi \le 0.$
- $A_{L} \leq Z \geq \infty, \quad 0 \geq Ia = I\cos\varphi \leq I, \quad I \leq I_{p} I\sin\varphi$

Методические указания.

Отсутствие навыка работы в электронной лаборатории требует повышенного внимания при выполнении лабораторной работы. Поэтому еще раз следует напомнить, что для выполнения лабораторной работы необходимо установить программу Electronics Workbench 5.12 - Portable-Эмулятор электрических схем, которую можно найти в Интернете по адресу:

http://soft-plus.ucoz.ru/load/100-0-261

и бесплатно скачать на рабочий компьютер.

После установки указанной программы на рабочем столе компьютера появляется символика программы Electronics Wor.... После запуска программы появляется окно, в котором располагается меню, инструментальная строка и строка библиотеки компонентов.

Ниже появляется не поименованное (Untitled) рабочее поле, в пределах которого будет производиться построение исследуемых схем (схемы электрических цепей с R и L) с необходимыми приборами для выполнения измерений и регистрации результатов моделирования;

Элементы электрической цепи из окон выбора источников (Sources), измерительные приборы амперметр и вольтметр берутся с панели индикатора (Indicators), а осциллограф - с панели инструментов (Instruments).

Измерительные приборы - амперметр и вольтметр переключаются в режим измерения переменного тока AC.

Численные значения параметров принимаются в соответствии с вариантом по следующему правилу.

Для студентов, фамилии которых начинаются с букв:

А, БиВ; Г, ДиЕ; Ж, ЗиИ; КиМ; Н, ОиП; Р, СиТ; У, ФиХ; Ц, ЧиШ; Щ, ЭиЯ; U = 120 220 80 380 220 120 120 60 60 (B). R = 5-151-20 2-10 4-18 3-12 8-15 6-14 2-8 2-9 (Ом). $\cos \theta = 0.8$ 0.78 0.7 0.65 0.5 0.46 0.72 0.64 0.58 ω=50 Гц. Для всех вариантов:

Отчетность.

Лабораторная работа считается выполненной, если погрешность сравнения результатов расчета и измерений не превышает 1-1.5%

Выполнение работы не следует откладывать на время сессии.